Mercury(II) bromide

From Wikipedia, the free encyclopedia
Mercury(II) bromide
Identifiers
CAS number 7789-47-1 YesY
PubChem 24612
RTECS number OV7415000
Properties
Molecular formula HgBr2
Molar mass 360.41 g/mol
Appearance white solid
Density 6.03 g/cm³, solid
Melting point 237 °C; 459 °F; 510 K
Boiling point 322 °C; 612 °F; 595 K
Solubility in water soluble
Solubility very slightly soluble in ether
Structure
Coordination
geometry
rhombic
Hazards
EU Index 080-002-00-6
EU classification Very toxic (T+)
Dangerous for the environment (N)
R-phrases R26/27/28, R33, R50/53
S-phrases (S1/2), S13, S28, S45, S60, S61
NFPA 704
0
3
0
Flash point Non-flammable
Related compounds
Other anions Mercury(II) fluoride
Mercury(II) chloride
Mercury(II) iodide
Other cations Zinc bromide
Cadmium bromide
Mercury(I) bromide
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references

Mercury(II) bromide or mercuric bromide is the chemical compound composed of mercury and bromine with the formula HgBr2. This white crystalline solid is a laboratory reagent. Like mercury(II) chloride, it is extremely toxic.

Preparation

Mercury(II) bromide can be manufactured by: adding potassium bromide to a solution of mercuric salt and crystallizing; by precipitation using a mercury(II) nitrate and sodium bromide solution; by dissolving mercury(II) oxide in hydrobromic acid.

Reactions

Mercury(II) bromide is used as a reagent in the Koenigs–Knorr reaction, which forms glycoside linkages on carbohydrates.[1][2]

It is also used to test for the presence of arsenic, as recommended by the Pharmacopoeia.[3] The arsenic in the sample is first converted to arsine gas by treatment with hydrogen. Arsine reacts with mercury(II) bromide:[4]

AsH3 + 3HgBr2 → As(HgBr)3 + 3HBr

The white mercury(II) bromide will turn yellow, brown, or black if arsenic is present in the sample.[5]

Mercury(II) bromide reacts violently with elemental indium at high temperatures[6] and, when exposed to potassium, can form shock-sensitive explosive mixtures.[7]

References

  1. Horton, Derek (2004), Advances in Carbohydrate Chemistry and Biochemistry, Amsterdam: Elseveir Academic Press, p. 76, ISBN 0-12-007259-9, retrieved 2008-05-29 
  2. Stick, Robert V. (2001), Carbohydrates: The Sweet Molecules of Life, San Diego: Academic Press, p. 125, ISBN 0-12-670960-2, retrieved 2008-05-29 
  3. Pederson, Ole (2006), Pharmaceutical Chemical Analysis, Boca Raton, FL: CRC Press, p. 107, ISBN 0-8493-1978-1, retrieved 2008-05-29 
  4. Odegaard, Nancy; Sadongei, Alyce (2005), Old Poisons, New Problems, Rowman Altamira, p. 58, ISBN 0-7591-0515-4, retrieved 2008-05-29 
  5. Townsend, Timothy G.; Solo-Gabriele, Helena (2006), Environmental Impacts of Treated Wood, Boca Raton, FL: CRC Press, p. 339, ISBN 0-8493-6495-7, retrieved 2008-05-29 
  6. Bretherick, L.; Urben, P. G.; Pitt, Martin John (1999), Bretherick's Handbook of Reactive Chemical Hazards, Elseveir Academic Press, p. 110, ISBN 0-7506-3605-X, retrieved 2008-05-29 
  7. Bretherick, L.; Urben, P. G.; Pitt, Martin John (1999), Bretherick's Handbook of Reactive Chemical Hazards, Elseveir Academic Press, p. 1276, ISBN 0-7506-3605-X, retrieved 2008-05-29 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.