Medicinal mushroom

From Wikipedia, the free encyclopedia
Lepista nuda

Medicinal mushrooms are mushrooms used in medicine or medical research.

History

Mushroom artwork by Chen Hongshou, Hiroshige II, and Lang Shining (left) Mesoamerican mushroom stones (right)
Ganoderma cultivation (left, Hokkaido) Cordyceps store (right, Lhasa)

Mushrooms, fermentation molds, mycelia, sclerotium, and lichens, have a history of medicinal use spanning millennia. The mushroom with the longest record of medicinal use Ganoderma lucidum, is known in Chinese as líng zhī ("spirit plant"), and in Japanese as mannentake ("10,000 year mushroom"). In ancient Japan, Grifola frondosa was worth its weight in silver.[1]

A Hadith states, "Truffles are manna which Allah sent to the people of Israel through Moses, and its juice is a medicine for the eyes."[2] Ötzi the Iceman was found carrying Fomes fomentarius and Piptoporus betulinus.[3] Inonotus obliquus was used in Russia as early as the 16th century, and it featured in Alexandr Solzhenitsyn's 1967 novel Cancer Ward.[4] Ancient Egyptians considered mushrooms food for royalty.

Fungi that do not produce mushrooms, have made large contributions to medicine being the source of immunosuppressants ciclosporin, mycophenolic acid, mizoribine, antibiotics penicillin, cephalosporins, fusafungine, usnic acid, fusidic acid, fumagillin, brefeldin A, verrucarin A, alamethicin, antifungals griseofulvin, echinocandins, strobilurin, azoxystrobin, caspofungin, micafungin, and statins lovastatin, mevastatin (pravastatin precursor), and monacolin J (simvastatin precursor).

Medical applications

Antimicrobial isolates and derivatives

Antibiotics retapamulin, tiamulin, and valnemulin are derivatives of the mushroom isolate pleuromutilin. Plectasin, coprinol, and sparassol, are antibiotics isolated from mushrooms. Researchers have isolated a number of antifungal, antiviral, and antiprotozoan, isolates from mushrooms.

Mushroom enzyme inhibitors

Mushroom Isolate/extract/metabolite Enzyme inhibited
Pleurotus ostreatus lovastatin HMG-CoA reductase
Hypholoma sublateritium clavaric acid farnesyltransferase
Polyozellus multiplex polyozellin, thelephoric acid, kynapcins prolyl endopeptidase
Lentinula edodes eritadenine S-adenosyl-L-homocysteine hydrolase
Coprinopsis atramentaria 1-aminocyclopropanol acetaldehyde dehydrogenase
Inonotus obliquus extract dipeptidyl peptidase-4
Grifola frondosa extract alpha glucosidase
Trametes versicolor extract alpha amylase
Pholiota squarrosa, Daedalea quercina extract (Pholiota squarrosa), quercinol (Daedalea quercina) xanthine oxidase
Phellinus linteus phellinstatin enoyl-ACP reductase
Phellinus linteus hispidin and hypholomine B neuraminidase
Various extract 5-alpha reductase
Various extract aromatase
Various peptides angiotensin-converting enzyme
Daedalea quercina quercinol cyclooxygenase 2
Daedalea quercina quercinol horseradish peroxidase

Anticancer research

Bristol-Myers Squibb manufactures paclitaxel using Penicillium raistrickii. In 2014, researchers reported creating a transgenic Flammulina velutipes that expresses the gene used to synthesize the paclitaxel precursor baccatin III.[5]

Some mushroom extracts and isolates have been researched for anticancer activity. As examples:

Some countries have approved mushroom extracts lentinan, polysaccharide-K, and polysaccharide peptide as immunologic adjuvants.[6] There is some evidence of this use having effectiveness in prolonging and improving the quality of life for patients with certain cancers, although the Memorial Sloan-Kettering Cancer Center observes that "well designed, large scale studies are needed to establish the role of lentinan as a useful adjunct to cancer treatment".[7] According to Cancer Research UK, "there is currently no evidence that any type of mushroom or mushroom extract can prevent or cure cancer".[8][9]

Antidiabetic research

Many mushroom isolates act as DPP-4 inhibitors, alpha-glucosidase inhibitors, and alpha amylase inhibitors in vitro. Ternatin is a mushroom isolate that suppresses hyperglycemia.[10]

Psychotropic research

Psychotropic medicines created from ergot alkaloids include cafergot, dihydroergotamine, methysergide, methylergometrine, hydergine, nicergoline, lisuride, bromocriptine, cabergoline, pergolide. Polyozellus multiplex synthesizes prolyl endopeptidase inhibitors polyozellin, thelephoric acid, kynapcins, while Hericium erinaceus isolates erinacine and hericenone promote nerve growth factor synthesis and myelination in vitro. Neurotrophic mushroom isolates include the tricholomalides, scabronines, termitomycesphins, and theanine.

Many mushrooms synthesize the partial, non-selective, serotonin receptor agonist/analog psilocin.

Nutritional research

The photochemistry of Vitamin D biosynthesis

Mushrooms are the only food source of statins like lovastatin.[citation needed] Only fungi and animals can synthesize vitamin D. Mushrooms have been verified creating D2 (ergocalciferol), D4 (22-dihydroergocalciferol), and vitamin D1 (Lumisterol+D2).[11] Mushrooms are a rare source of ergothioneine,[12] contain ACE inhibitor peptides, and are a source of prebiotic dietary fiber. Mushrooms also contain a variety of chemicals like lovastatin, cordycepin, inotilone, quercinol, antcin B, antrodioxolanone, and benzocamphorin F having preliminary research evidence for anti-inflammatory activity.[citation needed]

Edible species

Agaricus bisporus (Portobello, cremini, white button, champignon)

Agaricus bisporus (left) Agaricus subrufescens (center) Agrocybe aegerita (right)

Agaricus bisporus extracts have immunomodulatory activities in vivo,[13][14] and activity against several cancer cell lines.[15]

Agaricus subrufescens (Agaricus blazei/brasiliensis, almond mushroom)

Agaricus subrufescens is a medicinal mushroom associated with Brazil and Japan.[16][17] Research and small clinical studies demonstrated Agaricus subrufescens extracts have antihyperglycemic and anticancer activities.[18][19][20][21] Brefeldin A and blazein were isolated from Agaricus subrufescens.

Agrocybe aegerita (Pioppino, chestnut mushroom)

An Agrocybe aegerita extract demonstrated anticancer and immunomodulatory activities in vivo.[22]

Auricularia auricula (Wood ear, kikurage)

'
Auricularia auricula (left) Auricularia polytricha (right)

Auricularia auricula extracts have antihyperglycemic in vivo, and anticancer, anticoagulant, and anticholesterol activities in vitro.[23][24]

Auricularia polytricha (Cloud ear)

An Auricularia polytricha isolate inhibited sarcoma in vivo.[25]

Boletus badius

Theanine can be derived from this mushroom.[26]

Boletus edulis (Porcini, cep, borovik, steinpilz)

Boletus edulis (left) Coprinus comatus (center) Cordyceps attached to a caterpillar (right)

A lectin isolated from the mycorrhizal mushroom Boletus edulis has anticancer activity.[27]

Coprinus comatus (Ink cap)

A Coprinus comatus extract inhibited adenocarcinoma in vitro.[28]

Cordyceps sinensis (Caterpillar fungus, yartsa gunbu, dong chong xia cao)

Cordyceps sinensis is an entomopathogenic mushroom collected on the Tibetan Plateau. The immunosuppressant ciclosporin was originally isolated from Cordyceps subsessilis. The adenosine analog cordycepin was originally isolated from Cordyceps. Other Cordyceps isolates include, cordymin, cordycepsidone, and cordyheptapeptide.[29] CS-4 is a commercial strain of Cordyceps sinensis.

Flammulina velutipes (Enokitake)

Flammulina velutipes (left) cultivated Flammulina velutipes (right)

Animal testing of Flammulina velutipes has indicated possible applications in the development of vaccines and cancer immunotherapy.

Grifola frondosa (Maitake)

'
Grifola frondosa (left) Hypsizygus tessellatus (center) Lentinula edodes (right)

Grifola frondosa studies indicate potential anticancer and antihyperglycemic activities. D-fraction, MD-fraction, SX-fraction, and grifolan, are researched isolates of Grifola frondosa.

Hypsizygus tessellatus (Hypsizygus marmoreus, shimeji)

Studies have isolated antiatherosclerotic, antifungal, and immunomodulatory compounds from Hypsizygus tessellatus.

Lentinula edodes (Shiitake)

Lentinan, AHCC, and eritadenine, are isolates of Lentinula edodes. In 1985 Japan approved lentinan as an adjuvant for gastric cancer. Studies there indicate prolonged survival and improved quality of life when gastric cancer patients with unresectable or recurrent diseases are treated with lentinan in combination with other chemotherapies. [6]

Lignosus rhinocerus (Tiger milk mushroom)

Lignosus rhinocerus is a medicinal mushroom associated with Malaysia.[30]

Morchella esculenta (Morel)

'
Morchella esculenta (left) Phallus indusiatus (right)

A Morchella esculenta isolate has immunomodulatory activity in vitro.[31]

Phallus impudicus

Phallus impudicus extracts have been clinically researched in relation to venous thrombosis.[32]

Phallus indusiatus (Dictyophora indusiata, bamboo mushroom)

Medicinal use of Phallus indusiatus was first noted during the Tang Dynasty. Phallus indusiatus extracts promote NGF-synthesis and have anti-inflammatory activity in vitro. Phallus indusiatus isolates include 5-(hydroxymethyl)-2-furfural, the antibiotic albaflavenone, dictyophorines, and dictyoquinazols.

Pholiota nameko (Nameko)

Pholiota nameko (left) Pleurotus citrinopileatus (center) Pleurotus djamor (right)

Pholiota nameko creates compounds with antiinflammatory, immunomodulatory, and hypolipidemic activities.[33][34][35]

Pleurotus citrinopileatus (Golden oyster mushroom)

Pleurotus citrinopileatus extracts have antihyperglycemic activity in vivo.

Pleurotus djamor (Pink oyster mushroom)

A Pleurotus djamor isolate has anticancer activity in vitro.[36]

Pleurotus eryngii (King oyster mushroom, eringi)

Pleurotus eryngii (left) Pleurotus ostreatus (center) Sparassis crispa (right)

Pleurotus eryngii extracts have immunomodulatory activities in vitro.[37] Pleurone, erylysin A and B, eryngase, ubiquinone-9, eryngeolysin, a 14 kDa phytase, eryngin, eryngiolide A, and pleureryn, are researched Pleurotus eryngii isolates.

Pleurotus ostreatus (Oyster mushroom, hiratake)

Pleurotus ostreatus creates lovastatin, chrysin, pleuran, and ACE inhibitor peptides.[38][39] Pleurotus ostreatus extracts may inhibit cholesterol biosynthesis, as well as having potential anticancer and immunomodulatory activities.[40][41][42]

Sparassis crispa (Cauliflower mushroom)

Sparassis crispa has anticancer and immunomodulating activity in vivo.[43][44][45][46][47]

Tremella fuciformis (White jelly fungus)

'
Tremella fuciformis (left) Tremella mesenterica (right)

A Tremella fuciformis isolate protected against effects of radiation in vivo.

Tremella mesenterica (Golden jelly fungus)

Tremella mesenterica has potential anticancer and immunomodulating activities.[48][49][50]

Tricholoma matsutake (Matsutake, pine mushroom)

'
Tricholoma matsutake (left) Ustilago maydis (center) Volvariella volvacea (right)

Isolates from the mycorrhizal mushroom, Tricholoma matsutake, have anticancer and immunomodulating activities. [51][52][53][54][55][56][57]

Ustilago maydis (Mexican truffle, huitlacoche, corn fungus)

Ustilago maydis creates ustilagine and ustilagic acid.[58]

Volvariella volvacea (Straw mushroom)

Volvariella volvacea, a mushroom associated with Southeast Asia, has anticancer activity in vitro.[59][60]

Extractable species

Astraeus hygrometricus (Earthstar)

Astraeus hygrometricus (left) Fomes fomentarius (center) Ganoderma lucidum (right)

Astraeus hygrometricus, a mushroom associated with India and China, has anticancer activity in vivo.[61][62]

Cyathus stercoreus

Cyathus stercoreus creates polyketide antioxidants, cyathusals, cyathuscavins, and pulvinatal.[63][64]

Cyathus striatus

Cyathus striatus creates cyathins, striatins, and antimicrobial compounds.[65][66][67]

Fomes fomentarius (Amadou, tinder conk)

Fomes fomentarius extracts have immunomodulatory activity in vivo, and anticancer activity in vitro.[68][69]

Ganoderma lucidum (Ling zhi, mannentake, reishi)

Ganoderma lucidum is the mushroom with the longest record of medicinal use. Ganoderma lucidum is thought to be useful against a variety of ailments. Ganoderma lucidum contains p-hydroxybenzoic acid, cinnamic acid, and lanostane-type triterpenoids like ganoderic acids.[70]

Hydnellum peckii

'
Hydnellum peckii (left) Inonotus obliquus (center) Peziza vesiculosa (right)

Atromentin is an anticoagulant isolated from the mycorrhizal mushroom Hydnellum peckii.[71][72]

Inonotus obliquus (Chaga)

Inonotus obliquus has been used for centuries in Russia and Eastern Europe. Inotodiol, melanin, trametenolic acid, and the betulinic acid precursor betulin are researched Inonotus obliquus isolates.[73] An in vivo study showed an Inonotus obliquus extract increased the melanoma survival rate 4-fold. Additional research indicates potential anticancer activity.[74][75][76][77][78][79][80] Befungin is a commercial Russian extract of Inonotus obliquus.[81]

Peziza vesiculosa

Peziza vesiculosa creates vesiculogen, and has been researched for anticancer activity.[82][83][84][85][86]

Phellinus linteus (Meshimakobu, sanghwang)

'
Phellinus igniarius (left) Piptoporus betulinus (right)

Phellinus linteus is a mushroom associated with Korea. Phellinus linteus isolates include hispidin, inotilone, hispolon, phellinins, phellinstatin, interfungins, and hypholomine B.[87] Researchers have also studied the related species P. igniarius and P. rimosus.

Piptoporus betulinus (Birch polypore)

A hydroquinone isolated from Piptoporus betulinus inhibited a matrix metalloproteinase.[88]

Polyporus umbellatus

'
Polyporus umbellatus (left) Schizophyllum commune (right)

Polyporus umbellatus extracts have anti-inflammatory, anticancer, and immunomodulating activities, in vitro.[89][90][91][92][93][94][95][96]

Poria cocos

Poria cocos is a medicinal fungus associated with China.[97]

Schizophyllum commune (Split gill)

Schizophyllan (SPG, sizofiran, sonifilan), an isolate of Schizophyllum commune, has been researched clinically for anticancer activity.[98] Hydrophobins were originally isolated from Schizophyllum commune. A chemically analogous polysaccharide, scleroglucan, is an isolate of Sclerotium rolfsii.

Taiwanofungus camphoratus (Antrodia camphorata/cinnamomea, niuchangchih)

Antroquinonol, antrocamphins, zhankuic acids, and antcins are researched Taiwanofungus camphoratus isolates.

Trametes gibbosa (Daedalea gibbosa)

'
Trametes gibbosa (left) Trametes versicolor (center) Xylaria hypoxylon (right)

A Trametes gibbosa extract inhibited leukemia in vivo.[99]

Trametes versicolor (Coriolus versicolor, yun zhi, kawaratake, turkey tail)

Medicinal use of Trametes versicolor was first noted during the Ming Dynasty. PSK (Krestin, polysaccharide-K) and PSP (polysaccharopeptide) are protein-bound polysaccharides isolated from different Trametes versicolor mycelia strains. In Japan, PSK is a gastric cancer adjuvant. Japan began using PSK in 1977, while China began using PSP in 1987.

Xylaria hypoxylon {Candlestick fungus)

Xylaria hypoxylon extracts have hemagglutinating, antiproliferative, and antimitogenic activities.[100][101][102][103]

Contamination hazards

Mushrooms can accumulate, even hyper-accumulate, particular heavy metals and radionuclides.[104]

See also

References

  1. "Maitake Mushroom". Complementary and Alternative Medicine : Diet and Nutrition. American Cancer Society. 2008. Retrieved 2011-03-08. 
  2. Muhammad. "Book 23, Chapter 27". Hadith. Sahih Muslim. pp. 5084–9. ISBN 0-7045-0303-4. 
  3. Peintner, U; Poder, R; Pumpel, T (1998). "The iceman's fungi". Mycological Research 102 (10): 1153–62. doi:10.1017/S0953756298006546. 
  4. Zheng, Weifa; Miao, Kangjie; Liu, Yubing; Zhao, Yanxia; Zhang, Meimei; Pan, Shenyuan; Dai, Yucheng (2010). "Chemical diversity of biologically active metabolites in the sclerotia of Inonotus obliquus and submerged culture strategies for up-regulating their production". Applied Microbiology and Biotechnology 87 (4): 1237–54. doi:10.1007/s00253-010-2682-4. PMID 20532760. 
  5. Han F, Kang LZ, Zeng XL, Ye ZW, Guo LQ, Lin JF (2014). "Bioproduction of baccatin III, an advanced precursor of paclitaxol with transgenic Flammulina velutipes expressing 10-Deacetylbaccatin III-10-O-acetyl transferase gene.". J Sci Food Agric. doi:10.1002/jsfa.6562. PMID 24403190. 
  6. 6.0 6.1 Ina, K; Kataoka, T; Ando, T (2013). "The use of lentinan for treating gastric cancer". Anti-cancer agents in medicinal chemistry 13 (5): 681–8. doi:10.2174/1871520611313050002. PMC 3664515. PMID 23092289. 
  7. "Lentinan". Memorial Sloan-Kettering Cancer Center. 27 February 2013. Retrieved August 2013. 
  8. "Mushrooms and cancer". Cancer Research UK. Retrieved August 2013. 
  9. Gao, Y; Xu, H; Lu, Z; Xu, Z (2009). "Quantitative determination of steroids in the fruiting bodies and submerged-cultured mycelia of Inonotus obliquus". Se pu = Chinese journal of chromatography / Zhongguo hua xue hui 27 (6): 745–9. PMID 20352924. 
  10. Lo, HC; Wasser, SP (2011). "Medicinal mushrooms for glycemic control in diabetes mellitus: History, current status, future perspectives, and unsolved problems (review)". International journal of medicinal mushrooms 13 (5): 401–26. PMID 22324407. 
  11. PMID 24494050 (PubMed)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  12. PMID 22230474 (PubMed)
    Citation will be completed automatically in a few minutes. Jump the queue or expand by hand
  13. Ren, Z; Guo, Z; Meydani, SN; Wu, Dayong (2008). "White button mushroom enhances maturation of bone marrow-derived dendritic cells and their antigen presenting function in mice". The Journal of nutrition 138 (3): 544–50. PMID 18287364. 
  14. Wu, Dayong; Pae, Munkyong; Ren, Zhihong; Guo, Zhuyan; Smith, Donald; Meydani, Simin Nikbin (2007). "Dietary supplementation with white button mushroom enhances natural killer cell activity in C57BL/6 mice". The Journal of nutrition 137 (6): 1472–7. PMID 17513409. 
  15. Yu, Lugang; Fernig, David G.; Smith, John A.; Milton, Jeremy D.; Rhodes, Jonathan M. (1993). "Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin". Cancer Research 53 (19): 4627–32. PMID 8402638. 
  16. Takaku, Takeshi; Kimura, Yoshiyuki; Okuda, Hiromichi (May 2001). "Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action". The Journal of Nutrition 131 (5): 1409–13. PMID 11340091. 
  17. Hyodo, I.; Amano, N; Eguchi, K; Narabayashi, M; Imanishi, J; Hirai, M; Nakano, T; Takashima, S (2004). "Nationwide Survey on Complementary and Alternative Medicine in Cancer Patients in Japan". Journal of Clinical Oncology 23 (12): 2645–54. doi:10.1200/JCO.2005.04.126. PMID 15728227. 
  18. Fortes, RC; Novaes, MRCG; Recova, VL; Melo, AL (2009). "Immunological, hematological, and glycemia effects of dietary supplementation with Agaricus sylvaticus on patients' colorectal cancer". Experimental Biology and Medicine 234 (1): 53–62. doi:10.3181/0806-RM-193. PMID 18997106. 
  19. Ahn, W.-S.; Kim, D.-J.; Chae, G.-T.; Lee, J.-M.; Bae, S.-M.; Sin, J.-I.; Kim, Y.-W.; Namkoong, S.-E.; Lee, I. P. (2004). "Natural killer cell activity and quality of life were improved by consumption of a mushroom extract, Agaricus blazei Murill Kyowa, in gynecological cancer patients undergoing chemotherapy". International Journal of Gynecological Cancer 14 (4): 589–94. doi:10.1111/j.1048-891X.2004.14403.x. PMID 15304151. 
  20. "Agaricus". About Herbs, Botanicals & Other Products. Memorial Sloan-Kettering Cancer Center. Retrieved 2010-01-18. 
  21. Hetland, G.; Johnson, E.; Lyberg, T.; Bernardshaw, S.; Tryggestad, A. M. A.; Grinde, B. (2008). "Effects of the Medicinal Mushroom Agaricus blazei Murill on Immunity, Infection and Cancer". Scandinavian Journal of Immunology 68 (4): 363–70. doi:10.1111/j.1365-3083.2008.02156.x. PMID 18782264. 
  22. Ji Y, Zheng MF, Ye SG, Wu XB, Chen JY (2012). "Agrocybe aegerita polysaccharide combined with chemotherapy improves tumor necrosis factor-α and interferon-γ levels in rat esophageal carcinoma.". Dis Esophagus. doi:10.1111/j.1442-2050.2012.01397.x. PMID 22947091. 
  23. Takeujchi, H; He, P; Mooi, LY (2004). "Reductive effect of hot-water extracts from woody ear (Auricularia auricula-judae Quel.) on food intake and blood glucose concentration in genetically diabetic KK-Ay mice". Journal of nutritional science and vitaminology 50 (4): 300–4. PMID 15527075. 
  24. Misaki, A; Kakuta, M; Sasaki, T; Tanaka, M; Miyaji, H (1981). "Studies on interrelation of structure and antitumor effects of polysaccharides: Antitumor action of periodate-modified, branched (1 goes to 3)-beta-D-glucan of Auricularia auricula-judae, and other polysaccharides containing (1 goes to 3)-glycosidic linkages". Carbohydrate research 92 (1): 115–29. doi:10.1016/S0008-6215(00)85986-8. PMID 7196285. 
  25. Song G, Du Q (2010). "Isolation of a polysaccharide with anticancer activity from Auricularia polytricha using high-speed countercurrent chromatography with an aqueous two-phase system.". J Chromatogr A 1217 (38): 5930–4. doi:10.1016/j.chroma.2010.07.036. PMID 20719324. 
  26. "l-theanine". drugs.com. 
  27. Bovi, Michele; Carrizo, Maria E.; Capaldi, Stefano; Perduca, Massimiliano; Chiarelli, Laurent R.; Galliano, Monica; Monaco, Hugo L. (2011). "Structure of a lectin with antitumoral properties in king bolete (Boletus edulis) mushrooms". Glycobiology 21 (8): 1000–9. doi:10.1093/glycob/cwr012. PMID 21303815. 
  28. Dotan, Nesly; Wasser, Solomon P.; Mahajna, Jamal (2010). "The Culinary-Medicinal Mushroom Coprinus comatus as a Natural Antiandrogenic Modulator". Integrative Cancer Therapies 10 (2): 148–59. doi:10.1177/1534735410383169. PMID 21147815. 
  29. Khan, Md.Asaduzzaman; Tania, Mousumi; Zhang, Dian-Zheng; Chen, Han-Chun (2010). "Cordyceps Mushroom: A Potent Anticancer Nutraceutical". The Open Nutraceuticals Journal 3: 179–83. doi:10.2174/1876396001003010179. 
  30. Lee SS, Tan NH, Fung SY, Pailoor J, Sim SM (2011). "Evaluation of the sub-acute toxicity of the sclerotium of Lignosus rhinocerus (Cooke), the Tiger Milk mushroom.". J Ethnopharmacol 138 (1): 192–200. doi:10.1016/j.jep.2011.09.004. PMID 21930194. 
  31. Duncan, Christine J. G.; Pugh, Nirmal; Pasco, David S.; Ross, Samir A. (2002). "Isolation of a Galactomannan That Enhances Macrophage Activation from the Edible FungusMorchella esculenta". Journal of Agricultural and Food Chemistry 50 (20): 5683–5. doi:10.1021/jf020267c. PMID 12236698. 
  32. Kuznecova G, Jegina K, Kuznecovs S, Kuznecovs I (2007). "Phallus impudicus in thromboprophylaxis in breast cancer patients undergoing chemotherapy and hormonal treatment". The Breast 16 (S1): S56. 
  33. Li H, Zhang M, Ma G (2010). "Hypolipidemic effect of the polysaccharide from Pholiota nameko.". Nutrition 26 (5): 556–62. doi:10.1016/j.nut.2009.06.009. PMID 19815391. 
  34. Li H, Lu X, Zhang S, Lu M, Liu H (2008). "Anti-inflammatory activity of polysaccharide from Pholiota nameko.". Biochemistry (Mosc) 73 (6): 669–75. PMID 18620532. 
  35. Li H, Liu X, Li Y, Hua Y, Zhi D, Pang G (2012). "Effects of the polysaccharide from Pholiota nameko on human cytokine network in serum.". Int J Biol Macromol 50 (1): 164–70. doi:10.1016/j.ijbiomac.2011.10.015. PMID 22044749. 
  36. Wu, Xiangli; Zheng, Suyue; Cui, Li; Wang, Hexiang; Ng, Tzi Bun (2010). "Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor". The Journal of General and Applied Microbiology 56 (3): 231–9. doi:10.2323/jgam.56.231. PMID 20647680. 
  37. Nozaki, Hirofumi; Itonori, Saki; Sugita, Mutsumi; Nakamura, Kimihide; Ohba, Kiyoshi; Suzuki, Akemi; Kushi, Yasunori (2008). "Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 α/β TCR-double positive cells in vitro". Biochemical and Biophysical Research Communications 373 (3): 435–9. doi:10.1016/j.bbrc.2008.06.047. PMID 18577373. 
  38. Gunde-Cimerman, N; Cimerman, A (1995). "Pleurotus Fruiting Bodies Contain the Inhibitor of 3-Hydroxy-3-Methylglutaryl-Coenzyme a Reductase—Lovastatin". Experimental Mycology 19 (1): 1–6. doi:10.1006/emyc.1995.1001. PMID 7614366. 
  39. Alarcón, J; Aguila, S (2006). "Lovastatin production by Pleurotus ostreatus: effects of the C:N ratio". Zeitschrift fur Naturforschung. C, Journal of biosciences 61 (1–2): 95–8. PMID 16610224. 
  40. Sliva (1992). "Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway". International Journal of Oncology: 1307–13. doi:10.3892/ijo_00000122. 
  41. Bobek, P; Galbavy, S (2001). "Effect of pleuran (beta-glucan from Pleurotus ostreatus) on the antioxidant status of the organism and on dimethylhydrazine-induced precancerous lesions in rat colon". British journal of biomedical science 58 (3): 164–8. PMID 11575739. 
  42. Zusman, I; Reifen, R; Livni, O; Smirnoff, P; Gurevich, P; Sandler, B; Nyska, A; Gal, R; Tendler, Y (1997). "Role of apoptosis, proliferating cell nuclear antigen and p53 protein in chemically induced colon cancer in rats fed corncob fiber treated with the fungus Pleurotus ostreatus". Anticancer research 17 (3C): 2105–13. PMID 9216672. 
  43. Ohno, N; Miura, NN; Nakajima, M; Yadomae, T (2000). "Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa". Biological & Pharmaceutical Bulletin 23 (7): 866–72. doi:10.1248/bpb.23.866. PMID 10919368. 
  44. Harada, Toshie; Miura, Noriko; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito (2002). "Effect of SCG, 1,3-β-D-Glucan from Sparassis crispa on the Hematopoietic Response in Cyclophosphamide Induced Leukopenic Mice". Biological & Pharmaceutical Bulletin 25 (7): 931–9. doi:10.1248/bpb.25.931. PMID 12132673. 
  45. Nameda, Sachiko; Harada, Toshie; Miura, Noriko N.; Adachi, Yoshiyuki; Yadomae, Toshiro; Nakajima, Mitsuhiro; Ohno, Naohito (2003). "Enhanced Cytokine Synthesis of Leukocytes by a β‐Glucan Preparation, SCG, Extracted from a Medicinal Mushroom,Sparassis crispa". Immunopharmacology and Immunotoxicology 25 (3): 321–35. doi:10.1081/IPH-120024500. PMID 19180796. 
  46. Harada, Toshie; Miura, Noriko N.; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito (2002). "IFN-γInduction by SCG, 1,3-β-D-Glucan fromSparassis crispa, in DBA/2 MiceIn Vitro". Journal of Interferon & Cytokine Research 22 (12): 1227–39. doi:10.1089/10799900260475759. 
  47. Kim, Hyung Sook; Kim, Jee Youn; Ryu, Hwa Sun; Park, Hyuk-Gu; Kim, Yong Ook; Kang, Jong Soon; Kim, Hwan Mook; Hong, Jin Tae; Kim, Youngsoo (2010). "Induction of dendritic cell maturation by β-glucan isolated from Sparassis crispa". International Immunopharmacology 10 (10): 1284–94. doi:10.1016/j.intimp.2010.07.012. PMID 20699131. 
  48. Vinogradov, Evgeny; Petersen, Bent O; Duus, Jens Ø; Wasser, Solomon (2004). "The structure of the glucuronoxylomannan produced by culinary-medicinal yellow brain mushroom (Tremella mesenterica Ritz.:Fr., Heterobasidiomycetes) grown as one cell biomass in submerged culture". Carbohydrate Research 339 (8): 1483–9. doi:10.1016/j.carres.2004.04.001. PMID 15178391. 
  49. Elisashvili, Vladimir; Wasser, Solomon P.; Tan, Kok-Kheng (2002). "Hypoglycemic, Interferonogenous, and Immunomodulatory Activity of Tremellastin from the Submerged Culture of Tremella mesenterica Retz.: Fr. (Heterobasidiomycetes)". International Journal for Medicinal Mushrooms 4 (3). 
  50. Vinogradov, Evgeny; Petersen, Bent O.; Duus, Jens O.; Wasser, Solomon P. (2004). "The Isolation, Structure, and Applications of the Exocellular Heteropolysaccharide Glucuronoxylomannan Produced by Yellow Brain Mushroom Tremella mesenterica Ritz.:Fr. (Heterobasidiomycetes)". International Journal of Medicinal Mushrooms 6 (4): 335. doi:10.1615/IntJMedMushr.v6.i4.40. 
  51. Ishihara, Yoko; Iijima, Hiroko; Yagi, Yoko; Matsunaga, Kenichi (2003). "Enhanced Recovery of NK Cell Activity in Mice under Restraint Stress by the Administration of a Biological Response Modifier Derived from the Mycelia of the Basidiomycete Tricholoma matsutake". Stress 6 (2): 141–8. doi:10.1080/1025389031000116479. PMID 12775334. 
  52. Ishihara, Yoko; Iijima, Hiroko; Yagi, Yoko; Hoshi, Hirotaka; Matsunaga, Kenichi (2004). "Inhibition of Decrease in Natural Killer Cell Activity in Repeatedly Restraint-Stressed Mice by a Biological Response Modifier Derived from Cultured Mycelia of the Basidiomycete Tricholoma matsutake". Neuroimmunomodulation 11 (1): 41–8. doi:10.1159/000072968. PMID 14557678. 
  53. Ebina, T (2003). "Activation of antitumor immunity by intratumor injection of biological preparations" [Activation of antitumor immunity by intratumor injection of biological preparations]. Gan to kagaku ryoho (in Japanese) 30 (11): 1555–8. PMID 14619462. 
  54. Hoshi, Hirotaka; Yagi, Yoko; Iijima, Hiroko; Matsunaga, Kenichi; Ishihara, Yoko; Yasuhara, Tadashi (2005). "Isolation and Characterization of a Novel Immunomodulatory α-Glucan−Protein Complex from the Mycelium ofTricholoma matsutakein Basidiomycetes". Journal of Agricultural and Food Chemistry 53 (23): 8948–56. doi:10.1021/jf0510743. PMID 16277387. 
  55. Hoshi, Hirotaka; Iijima, Hiroko; Ishihara, Yoko; Yasuhara, Tadashi; Matsunaga, Kenichi (2008). "Absorption and Tissue Distribution of an Immunomodulatory α-d-Glucan after Oral Administration of Tricholoma matsutake". Journal of Agricultural and Food Chemistry 56 (17): 7715–20. doi:10.1021/jf801123k. PMID 18680305. 
  56. Byeon, Se Eun; Lee, Jaehwi; Lee, Eunji; Lee, Song Yi; Hong, Eock Kee; Kim, Young Eon; Cho, Jae Youl (2009). "Functional activation of macrophages, monocytes and splenic lymphocytes by polysaccharide fraction from Tricholoma matsutake". Archives of Pharmacal Research 32 (11): 1565–72. doi:10.1007/s12272-009-2108-y. PMID 20091269. 
  57. Ebina, T (2005). "各種担子菌製剤の局所投与による抗腫瘍効果の差異" [Antitumor effects of intratumoral injection of Basidiomycetes preparations]. Gan to kagaku ryoho (in Japanese) 32 (11): 1654–6. PMID 16315899. 
  58. Juárez-Montiel M, Ruiloba de León S, Chávez-Camarillo G, Hernández-Rodríguez C, Villa-Tanaca L (2011). "Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food.". Rev Iberoam Micol 28 (2): 69–73. doi:10.1016/j.riam.2011.01.001. PMID 21352944. 
  59. Wu, JY; Chen, CH; Chang, WH; Chung, KT; Liu, YW; Lu, FJ; Chen, CH (2011). "Anti-Cancer Effects of Protein Extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea". Evidence-based complementary and alternative medicine 2011: 982368. doi:10.1093/ecam/neq057. PMC 3139501. PMID 21792367. 
  60. Das, D; Mondal, S; Roy, SK; Maiti, D; Bhunia, B; Maiti, TK; Sikdar, SR; Islam, SS (2010). "A (1→6)-β-glucan from a somatic hybrid of Pleurotus florida and Volvariella volvacea: isolation, characterization, and study of immunoenhancing properties". Carbohydrate research 345 (7): 974–8. doi:10.1016/j.carres.2010.02.028. PMID 20347070. 
  61. Mallick, S.K.; Maiti, S.; Bhutia, S.K.; Maiti, T.K. (2010). "Antitumor properties of a heteroglucan isolated from Astraeus hygrometricus on Dalton's lymphoma bearing mouse". Food and Chemical Toxicology 48 (8–9): 2115–21. doi:10.1016/j.fct.2010.05.013. PMID 20472019. 
  62. Mallick, Sanjaya K.; Maiti, Swatilekha; Bhutia, Sujit K.; Maiti, Tapas K. (2010). "Immunostimulatory Properties of a Polysaccharide Isolated fromAstraeus hygrometricus". Journal of Medicinal Food 13 (3): 665–72. doi:10.1089/jmf.2009.1300. PMID 20521989. 
  63. Kang HS, Kim KR, Jun EM, Park SH, Lee TS, Suh JW, Kim JP. (2008). "Cyathuscavins A, B, and C, new free radical scavengers with DNA protection activity from the Basidiomycete Cyathus stercoreus". Bioorganic & Medicinal Chemistry Letters 18 (14): 4047–50. doi:10.1016/j.bmcl.2008.05.110. PMID 18565749. 
  64. Kang HS, Jun EM, Park SH, Heo SJ, Lee TS, Yoo ID, Kim JP. (2007). "Cyathusals A, B, and C, antioxidants from the fermented mushroom Cyathus stercoreus". Journal of Natural Products 70 (6): 1043–45. doi:10.1021/np060637h. PMID 17511503. 
  65. Johri BN, Brodie HJ (1971). "Extracellular production of indolics by the fungus Cyathus.". Mycologia 63 (4): 736–44. doi:10.2307/3758043. PMID 5111071. 
  66. Allbutt AD, Ayer WA, Brodie HJ, Johri BN, Taube H (1971). "Cyathin, a new antibiotic complex produced by Cyathus helenae.". Can J Microbiol 17 (11): 1401–7. doi:10.1139/m71-223. PMID 5156938. 
  67. Anke T, Oberwinkler F (1977). "The striatins--new antibiotics from the basidiomycete Cyathus striatus (Huds. ex Pers.) Willd.". J Antibiot (Tokyo) 30 (3): 221–5. PMID 863783. 
  68. Gao, HL; Lei, LS; Yu, CL; Zhu, ZG; Chen, NN; Wu, SG (2009). "木蹄层孔菌多糖对小鼠免疫功能的影响" [Immunomodulatory effects of Fomes fomentarius polysaccharides: An experimental study in mice]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University (in Chinese) 29 (3): 458–61. PMID 19304524. 
  69. Chen, Wei; Zhao, Zhao; Chen, Shi-Fei; Li, Yong-Quan (2008). "Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro". Bioresource Technology 99 (8): 3187–94. doi:10.1016/j.biortech.2007.05.049. PMID 17624770. 
  70. Liu D, Gong J, Dai W, Kang X, Huang Z, Zhang HM et al. (2012). "The genome of Ganoderma lucidum provides insights into triterpenes biosynthesis and wood degradation [corrected].". PLoS ONE 7 (5): e36146. doi:10.1371/journal.pone.0036146. PMC 3342255. PMID 22567134. 
  71. Khanna, Jatinder M.; Malone, Marvin H.; Euler, Kenneth L.; Brady, Lynn R. (1965). "Atromentin. Anticoagulant from Hydnellum diabolus". Journal of Pharmaceutical Sciences 54 (7): 1016–20. doi:10.1002/jps.2600540714. PMID 5862512. 
  72. Zheng, Chang-Ji; Sohn, Mi-Jin; Kim, Won-Gon (2006). "Atromentin and Leucomelone, the First Inhibitors Specific to Enoyl-ACP Reductase (FabK) of Streptococcus pneumoniae". The Journal of Antibiotics 59 (12): 808–12. doi:10.1038/ja.2006.108. PMID 17323650. 
  73. Gao, Y; Xu, H; Lu, Z; Xu, Z (2009). "Quantitative determination of steroids in the fruiting bodies and submerged-cultured mycelia of Inonotus obliquus". Se pu 27 (6): 745–9. PMID 20352924. 
  74. Mizuno T, Zhuang C, Abe K, Okamoto H, Kiho T, Ukai S, Leclerc S, Meijer L (1999). "Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus". International Journal of Medicinal Mushrooms 1 (1): 301–16. ISSN 1521-9437. OCLC 39977461. 
  75. Kim, Yong Ook; Park, Hae Woong; Kim, Jong Hoon; Lee, Jae Young; Moon, Seong Hoon; Shin, Chul Soo (2006). "Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus". Life Sciences 79 (1): 72–80. doi:10.1016/j.lfs.2005.12.047. PMID 16458328. 
  76. Shashkina, M. Ya.; Shashkin, P. N.; Sergeev, A. V. (2006). "Chemical and medicobiological properties of chaga (review)". Pharmaceutical Chemistry Journal 40 (10): 560–8. doi:10.1007/s11094-006-0194-4. 
  77. Taji, Sayaka; Yamada, Takeshi; Wada, Shun-Ichi; Tokuda, Harukuni; Sakuma, Kazuo; Tanaka, Reiko (2008). "Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity". European Journal of Medicinal Chemistry 43 (11): 2373–9. doi:10.1016/j.ejmech.2008.01.037. PMID 18387711. 
  78. Nakata, Tomoko; Yamada, Takeshi; Taji, Sayaka; Ohishi, Hirofumi; Wada, Shun-Ichi; Tokuda, Harukuni; Sakuma, Kazuo; Tanaka, Reiko (2007). "Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus". Bioorganic & Medicinal Chemistry 15: 257–64. doi:10.1016/j.bmc.2006.09.064. 
  79. Kim, Y; Han, S; Lee, H; Ahn, H; Yoon, Y; Jung, J; Kim, H; Shin, C (2005). "Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of". Life Sciences 77 (19): 2438–56. doi:10.1016/j.lfs.2005.02.023. PMID 15970296. 
  80. Rzymowska, J (1998). "The effect of aqueous extracts from Inonotus obliquus on the mitotic index and enzyme activities". Bollettino chimico farmaceutico 137 (1): 13–5. PMID 9595828. 
  81. Kukulianskaia, TA; Kurchenko, NV; Kurchenko, VP; Babitskaia, VG (2002). "Physicochemical properties of melanins produced by Inonotus obliquus("chagi") in the nature and the cultivated fungus" [Physicochemical properties of melanins produced by Inonotus obliquus("chagi") in the nature and the cultivated fungus]. Prikladnaia biokhimiia i mikrobiologiia (in Russian) 38 (1): 68–72. PMID 11852571. 
  82. Mimura, H; Ohno, N; Suzuki, I; Yadomae, T (1985). "Purification, antitumor activity, and structural characterization of beta-1,3-glucan from Peziza vesiculosa". Chemical & pharmaceutical bulletin 33 (11): 5096–9. doi:10.1248/cpb.33.5096. PMID 3830434. 
  83. Suzuki, I; Yonekubo, H; Ohno, N; Miyazaki, T; Yadomae, T (1985). "Effect of a B cell mitogen extracted from a fungus Peziza vesiculosa on antibody production in mice". Journal of pharmacobio-dynamics 8 (7): 494–502. doi:10.1248/bpb1978.8.494. PMID 3906079. 
  84. Ohno, N; Mimura, H; Suzuki, I; Yadomae, T (1985). "Antitumor activity and structural characterization of polysaccharide fractions extracted with cold alkali from a fungus, Peziza vesiculosa". Chemical & pharmaceutical bulletin 33 (6): 2564–8. doi:10.1248/cpb.33.2564. PMID 4064214. 
  85. Suzuki, I; Yadomae, T; Yonekubo, H; Nishijima, M; Miyazaki, T (1982). "Antitumor activity of an immunomodulating material extracted from a fungus, Peziza vesiculosa". Chemical & pharmaceutical bulletin 30 (3): 1066–8. doi:10.1248/cpb.30.1066. PMID 7094166. 
  86. Yadomae, T; Suzuki, I; Kumazawa, Y; Miyazaki, T (1979). "A B lymphocyte mitogen extracted from a fungus Peziza vesiculosa". Microbiology and immunology 23 (10): 997–1008. PMID 316098. 
  87. Lee, YS; Kang, YH; Jung, JY; Lee, S; Ohuchi, K; Shin, KH; Kang, IJ; Park, JH; Shin, HK (2008). "Protein glycation inhibitors from the fruiting body of Phellinus linteus". Biological & Pharmaceutical Bulletin 31 (10): 1968–72. doi:10.1248/bpb.31.1968. PMID 18827365. 
  88. Kawagishi, Hirokazu; Hamajima, Keiko; Inoue, Yoshimasa (2002). "Novel Hydroquinone as a Matrix Metallo-proteinase Inhibitor from the Mushroom, Piptoporus betulinus". Bioscience, Biotechnology, and Biochemistry 66 (12): 2748–50. doi:10.1271/bbb.66.2748. PMID 12596882. 
  89. Li, Xinqun; Xu, Wen; Chen, Jun (2010). "Polysaccharide purified from Polyporus umbellatus (Per) Fr induces the activation and maturation of murine bone-derived dendritic cells via toll-like receptor 4". Cellular Immunology 265 (1): 50–6. doi:10.1016/j.cellimm.2010.07.002. PMID 20673883. 
  90. Zhao, Ying-Yong; Chao, Xu; Zhang, Yongmin; Lin, Rui-Chao; Sun, Wen-Ji (2010). "Cytotoxic Steroids from Polyporus umbellatus". Planta Medica 76 (15): 1755–8. doi:10.1055/s-0030-1249926. PMID 20458671. 
  91. Sun, Yi; Yasukawa, Ken (2008). "New anti-inflammatory ergostane-type ecdysteroids from the sclerotium of Polyporus umbellatus". Bioorganic & Medicinal Chemistry Letters 18 (11): 3417–20. doi:10.1016/j.bmcl.2008.04.008. PMID 18439824. 
  92. Zhou, Wei-Wei; Lin, Wen-Han; Guo, Shun-Xing (2007). "Two New Polyporusterones Isolated from the Sclerotia of Polyporus umbellatus". Chemical & Pharmaceutical Bulletin 55 (8): 1148–50. doi:10.1248/cpb.55.1148. PMID 17666835. 
  93. You, Jyh-sheng; Hau, Dou-mong; Chen, Kung-tung; Huang, Hui-feng (1994). "Combined Effects of Chuling (Polyporus umbellatus) Extract and Mitomycin C on Experimental Liver Cancer". The American Journal of Chinese Medicine 22 (1): 19–28. doi:10.1142/S0192415X94000048. PMID 8030616. 
  94. Ohsawa, T; Yukawa, M; Takao, C; Murayama, M; Bando, H (1992). "Studies on constituents of fruit body of Polyporus umbellatus and their cytotoxic activity". Chemical & pharmaceutical bulletin 40 (1): 143–7. doi:10.1248/cpb.40.143. PMID 1576664. 
  95. Zhang, YH; Liu, YL; Yan, SC (1991). "Effect of Polyporus umbellatus polysaccharide on function of macrophages in the peritoneal cavities of mice with liver lesions". Zhong xi yi jie he za zhi 11 (4): 225–6, 198. PMID 1773459. 
  96. Lin, YF; Wu, GL (1988). "Protective effect of Polyporus umbellatus polysaccharide on toxic hepatitis in mice". Zhongguo yao li xue bao 9 (4): 345–8. PMID 3195347. 
  97. Esteban, Carlos Illana (2009). "Interés medicinal de Poria cocos (= Wolfiporia extensa)" [Medicinal interest of Poria cocos (= Wolfiporia extensa)]. Revista Iberoamericana de Micología (in Spanish) 26 (2): 103–7. doi:10.1016/S1130-1406(09)70019-1. PMID 19631158. 
  98. Mantovani G, Bianchi A, Curreli L, Ghiani M, Astara G, Lampis B et al. (1997). "Clinical and immunological evaluation of schizophyllan (SPG) in combination with standard chemotherapy in patients with head and neck squamous cell carcinoma.". Int J Oncol 10 (1): 213–21. PMID 21533366. 
  99. Khamaisie, H; Sussan, S; Tal, M; Najajreh, Y; Ruthardt, M; Mahajna, J (2011). "Oleic acid is the active component in the mushroom Daedalea gibbosa inhibiting Bcr-Abl kinase autophosphorylation activity". Anticancer research 31 (1): 177–83. PMID 21273596. 
  100. Gu W, Ding H (2008). "Two new tetralone derivatives from the culture of Xylaria hypoxylon AT-028". Chinese Chemical Letters 19 (11): 1323–26. 
  101. Schüffler A, Sterner O, Anke H (2007). "Cytotoxic alpha-pyrones from Xylaria hypoxylon". Z. Naturforsch., C, J. Biosci. 62 (3-4): 169–72. PMID 17542480. 
  102. Espada A, Rivera Sagredo A, de la Fuente JM, Hueso Rodriguez JA, Elson SW (1997). "New cytochalasins from the fungus Xylaria hypoxylon". Tetrahedron 53 (18): 6485–92. 
  103. Liu Q, Wang H, Ng TB (December 2006). "First report of a xylose-specific lectin with potent hemagglutinating, antiproliferative and anti-mitogenic activities from a wild ascomycete mushroom". Biochim. Biophys. Acta 1760 (12): 1914–9. doi:10.1016/j.bbagen.2006.07.010. PMID 16952421. 
  104. Uptake of Radionuclides by Some Fungi (www.mycobiology.or.kr)

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.