Max-plus algebra
A max-plus algebra is a semiring over the union of real numbers and ε = , equipped with maximum and addition as the two binary operations. It can be used appropriately to determine marking times within a given Petri net and a vector filled with marking state at the beginning.
Operators
Scalar operations
Let a and b be real scalars or ε. Then the operations maximum (implied by the max operator ) and addition (plus operator ) for these scalars are defined as
Watch: Max-operator can easily be confused with the addition operation. Similar to the conventional algebra, all - operations have a higher precedence than - operations.
Matrix operations
Max-plus algebra can be used for matrix operands A, B likewise, where the size of both matrices is the same. To perform the A B - operation, the elements of the resulting matrix at (row i, column j) have to be set up by the maximum operation of both corresponding elements of the matrices A and B:
The - operation is similar to the algorithm of Matrix multiplication, however, every "+" calculation has to be substituted by an - operation and every "" calculation by a - operation. More precisely, to perform the A B - operation, where A is a m×p matrix and B is a p×n matrix, the elements of the resulting matrix at (row i, column j) are determined by matrices A (row i) and B (column j):
Useful enhancement elements
In order to handle marking times like which means "never before", the ε-element has been established by ε. According to the idea of infinity, the following equations can be found:
- ε a = a
- ε a = ε
To point the zero number out, the element e was defined by . Therefore:
- e a = a
Obviously, ε is the neutral element for the - operation, as e is for the - operation
Algebra properties
- associativity:
- commutativity :
- distributivity:
See also
Additional reading
- Butkovič, Peter (2010), Max-linear Systems: Theory and Algorithms, Springer Monographs in Mathematics, Springer-Verlag, doi:10.1007/978-1-84996-299-5