Mathieu group M11
Algebraic structure → Group theory Group theory |
---|
Modular groups
|
Infinite dimensional Lie group
|
In mathematics, the Mathieu group M11, introduced by Mathieu (1861, 1873), is a sharply 4-transitive permutation group on 11 objects, of order
- 24 · 32 · 5 · 11 (= 7920).
The Schur multiplier and the outer automorphism group are both trivial.
Construction
The Mathieu group can be defined as a permutation group on 11 points generated by some set of permutations, such as the pair (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) of permutations used by the GAP computer algebra system.
Representations
M11 has a strictly 4-transitive permutation representation on 11 points, whose point stabilizer is sometimes denoted by M10, and is a non-split extension of the form A6.2 (an extension of the group of order 2 by the alternating group A6). This action is the automorphism group of a Steiner system S(4,5,11). The induced action on unordered pairs of points gives a rank 3 action on 55 points.
M11 has a 2-transitive permutation representation on 12 points with point stabilizer PSL2(11). The permutation representations on 11 and 12 points can both be seen inside the Mathieu group M12 as two different embeddings of M11 in M12, exchanged by an outer automorphism.
The permutation representation on 11 points gives a complex irreducible representation in 10 dimensions. This is the smallest possible dimension of a faithful complex representation, though there are also two other such representations in 10 dimensions forming a complex conjugate pair.
M11 has two 5-dimensional irreducible representations over the field with 5 elements, related to the restrictions of 6-dimensional representations of the double cover of M12. These have the smallest dimension of any faithful linear representations of M11 over any field.
Maximal subgroups
There are 5 conjugacy classes of maximal subgroups.
- M10, order 720, one-point stabilizer in representation of degree 11
- PSL(2,11), order 660, one-point stabilizer in representation of degree 12
- M9:2, order 144, stabilizer of a 9 and 2 partition.
- S5, order 120, orbits of 5 and 6
- Stabilizer of block in the S(4,5,11) Steiner system
- Q:S3, order 48, orbits of 8 and 3
- Centralizer of a quadruple transposition
- Isomorphic to GL(2,3).
Number of elements of each order
The maximum order of any element in M11 is 11. The conjugacy class orders and sizes are found in the ATLAS.ATLAS: Mathieu group M11
Order | No. elements |
---|---|
1 = 1 | 1 = 1 |
2 = 2 | 165 = 3 · 5 · 11 |
3 = 3 | 440 = 23 · 5 · 11 |
4 = 22 | 990 = 2 · 32 · 5 · 11 |
5 = 5 | 1584 = 24 · 32 · 11 |
6 = 2 · 3 | 1320 = 23 · 3 · 5 · 11 |
8 = 23 | 990 = 2 · 32 · 5 · 11 |
8 = 23 | 990 = 2 · 32 · 5 · 11 |
11 = 11 | 720 = 24 · 32 · 5 |
11 = 11 | 720 = 24 · 32 · 5 |
References
- Cameron, Peter J. (1999), Permutation Groups, London Mathematical Society Student Texts 45, Cambridge University Press, ISBN 978-0-521-65378-7
- Carmichael, Robert D. (1956) [1937], Introduction to the theory of groups of finite order, New York: Dover Publications, ISBN 978-0-486-60300-1, MR 0075938
- Conway, John Horton (1971), "Three lectures on exceptional groups", in Powell, M. B.; Higman, Graham, Finite simple groups, Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969., Boston, MA: Academic Press, pp. 215–247, ISBN 978-0-12-563850-0, MR 0338152 Reprinted in Conway & Sloane (1999, 267–298)
- Conway, John Horton; Parker, Richard A.; Norton, Simon P.; Curtis, R. T.; Wilson, Robert A. (1985), Atlas of finite groups, Oxford University Press, ISBN 978-0-19-853199-9, MR 827219
- Conway, John Horton; Sloane, Neil J. A. (1999), Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften 290 (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-98585-5, MR 0920369
- Curtis, R. T. (1984), "The Steiner system S(5, 6, 12), the Mathieu group M₁₂ and the "kitten"", in Atkinson, Michael D., Computational group theory. Proceedings of the London Mathematical Society symposium held in Durham, July 30–August 9, 1982., Boston, MA: Academic Press, pp. 353–358, ISBN 978-0-12-066270-8, MR 760669
- Cuypers, Hans, The Mathieu groups and their geometries
- Dixon, John D.; Mortimer, Brian (1996), Permutation groups, Graduate Texts in Mathematics 163, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-0731-3, ISBN 978-0-387-94599-6, MR 1409812
- Griess, Robert L. Jr. (1998), Twelve sporadic groups, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-62778-4, MR 1707296
- Mathieu, Émile (1861), "Mémoire sur l'étude des fonctions de plusieurs quantités, sur la manière de les former et sur les substitutions qui les laissent invariables", Journal de Mathématiques Pures et Appliquées 6: 241–323
- Mathieu, Émile (1873), "Sur la fonction cinq fois transitive de 24 quantités", Journal de Mathématiques Pures et Appliquées (in French) 18: 25–46, JFM 05.0088.01
- Thompson, Thomas M. (1983), From error-correcting codes through sphere packings to simple groups, Carus Mathematical Monographs 21, Mathematical Association of America, ISBN 978-0-88385-023-7, MR 749038
- Witt, Ernst (1938a), "über Steinersche Systeme", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg (Springer Berlin / Heidelberg) 12: 265–275, doi:10.1007/BF02948948, ISSN 0025-5858
- Witt, Ernst (1938b), "Die 5-fach transitiven Gruppen von Mathieu", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 12: 256–264, doi:10.1007/BF02948947