Markov kernel

From Wikipedia, the free encyclopedia

In probability theory, a Markov kernel (or stochastic kernel) is a map that plays the role, in the general theory of Markov processes, that the transition matrix does in the theory of Markov processes with a finite state space.[1][2]

Formal definition

Let (X,{\mathcal  A}), (Y,{\mathcal  B}) be measurable spaces. A Markov kernel with source (X,{\mathcal  A}) and target (Y,{\mathcal  B}) is a map K that associates to each point x\in X a probability measure K(x) on (Y,{\mathcal  B}) such that, for every measurable set B\in {\mathcal  B}, the map x\mapsto K(x)(B) is measurable with respect to the \sigma -algebra {\mathcal  A}.

Let {\mathcal  P}(X,{\mathcal  A}) denote the set of all probability measures on the measurable space (X,{\mathcal  A}). If K is a Markov kernel with source (X,{\mathcal  A}) and target (Y,{\mathcal  B}) then we can naturally associate to K a map \widehat K:{\mathcal  P}(X,{\mathcal  A})\to {\mathcal  P}(Y,{\mathcal  B}) defined as follows: given P in {\mathcal  P}(X,{\mathcal  A}), we set \widehat K(P)(B)=\int _{X}K(x)(B)\,{\mathrm  d}P(x), for all B in {\mathcal  B}.

Estimation

The kernel can be estimated using kernel density estimation.[3]

References

  1. Epstein, P.; Howlett, P.; Schulze, M. S. (2003). "Distribution dynamics: Stratification, polarization, and convergence among OECD economies, 1870–1992". Explorations in Economic History 40: 78. doi:10.1016/S0014-4983(02)00023-2. 
  2. Reiss, R. D. (1993). A Course on Point Processes. Springer Series in Statistics. doi:10.1007/978-1-4613-9308-5. ISBN 978-1-4613-9310-8. 
  3. Poletti Laurini, M. R.; Valls Pereira, P. L. (2009). "Conditional stochastic kernel estimation by nonparametric methods". Economics Letters 105 (3): 234. doi:10.1016/j.econlet.2009.08.012. 
  • Bauer, Heinz (1996), Probability Theory, de Gruyter, ISBN 3-11-013935-9 
§36. Kernels and semigroups of kernels
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.