Mark Child

From Wikipedia, the free encyclopedia
Mark Sheard Child
Institutions University of Oxford
Alma mater University of Cambridge
Thesis The vibrational spectra of electronically degenerate molecules (1963)
Doctoral students Adam Kirrander
Christopher D. Cooper
Paul A. J. Sherratt
Richard T. Lawton
A.J. Duckett
Josyf C. Mychaleckyj
A.V. Chambers,
Christopher J. Ahston
M.R. Gover
Paul M. Hunt
Trevor Rayment
John William Thomson
Roger Blakeney Mallion
Peter Coveney,[1]
Colin Batchelor[2]
Notable awards Fellow of the Royal Society
Website
research.chem.ox.ac.uk/mark-child.aspx
Mark Sheard Child FRS is a British chemist, and Emeritus Fellow St Edmund Hall, Oxford.

Education

He attended the Pocklington School from 1947 to 1955.[3] He earned his Doctor of Philosophy degree from the University of Cambridge in 1963 with a thesis on The vibrational spectra of electronically degenerate molecules.

Research

Child's research interests include semiclassical mechanics,[4] Molecular collision theory,[5] Rydberg states[6][7][8][9] and Quantum Level Structures at a Saddle point.[10][11][12][13]

References

  1. Coveney, Peter V (1985). Semiclassical methods in scattering and spectroscopy (DPhil thesis). University of Oxford. 
  2. Batchelor, Colin (2003). Molecular Rydberg Dynamics (DPhil thesis). University of Oxford. 
  3. http://www.pocklingtonschool.com
  4. Mark Child (1991). Semiclassical mechanics with molecular applications. Oxford: Clarendon Press. ISBN 0-19-855654-3. 
  5. Mark Child (1996). Molecular collision theory. New York: Dover Publications. ISBN 0-486-69437-2. 
  6. Mark Child (2011). Theory of Molecular Rydberg States (Cambridge Molecular Science). Cambridge, UK: Cambridge University Press. ISBN 0-521-76995-7. 
  7. Child, M. S.; Jungen, C. (1990). "Quantum defect theory for asymmetric tops: Application to the Rydberg spectrum of H2O". The Journal of Chemical Physics 93 (11): 7756. Bibcode:1990JChPh..93.7756C. doi:10.1063/1.459355. 
  8. Child, M. S. (1997). "The Rydberg states of H2O". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 355 (1729): 1623–1610. doi:10.1098/rsta.1997.0080. 
  9. Hiyama, M.; Child, M. S. (2002). "Ab initio R-matrix/multichannel quantum defect theory study of nitric oxide". Journal of Physics B: Atomic, Molecular and Optical Physics 35 (5): 1337. doi:10.1088/0953-4075/35/5/316. 
  10. Child, M. S.; Weston, T.; Tennyson, J. (1999). "Quantum monodromy in the spectrum of H2O and other systems: New insight into the level structure of quasi-linear molecules". Molecular Physics 96 (3): 371. doi:10.1080/00268979909482971. 
  11. Jacobson, M. P.; Child, M. S. (2001). "Spectroscopic signatures of bond-breaking internal rotation. II. Rotation-vibration level structure and quantum monodromy in HCP". The Journal of Chemical Physics 114: 262. Bibcode:2001JChPh.114..262J. doi:10.1063/1.1330746. 
  12. Child, M. S. (2007). "Quantum Monodromyand Molecular Spectroscopy". Advances in Chemical Physics. Advances in Chemical Physics 136. pp. 39–02. doi:10.1002/9780470175422.ch2. ISBN 9780470175422. 
  13. Cooper, C. D.; Child, M. S. (2005). "Quantum level structures at a Fermi resonance with angular momentum: Classical periodic orbits, catastrophe maps and quantum monodromy". Physical Chemistry Chemical Physics 7 (14): 2731–2739. Bibcode:2005PCCP....7.2731C. doi:10.1039/B502772C. PMID 16189587. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.