Marcum Q-function

From Wikipedia, the free encyclopedia

In statistics, the Marcum-Q-function Q_{M} is defined as

Q_{M}(a,b)=\int _{{b}}^{{\infty }}x\left({\frac  {x}{a}}\right)^{{M-1}}\exp \left(-{\frac  {x^{2}+a^{2}}{2}}\right)I_{{M-1}}\left(ax\right)dx

Q_{M} is also defined as

Q_{M}(a,b)=\exp \left(-{\frac  {a^{2}+b^{2}}{2}}\right)\sum _{{k=1-M}}^{{\infty }}\left({\frac  {a}{b}}\right)^{{k}}I_{{k}}\left(ab\right)

with modified Bessel function I_{{M-1}} of order M  1. The Marcum Q-function is used for example as a cumulative distribution function for noncentral chi-squared and Rice distributions.

The Marcum Q-function is monotonic and log-concave.[1]

References

  • Marcum, J. I. (1950) "Table of Q Functions". U.S. Air Force RAND Research Memorandum M-339. Santa Monica, CA: Rand Corporation, Jan. 1, 1950.
  • Nuttall, Albert H. (1975): Some Integrals Involving the QM Function, IEEE Transactions on Information Theory, 21(1), 95-96, ISSN 0018-9448
  • Weisstein, Eric W. Marcum Q-Function. From MathWorld—A Wolfram Web Resource.
  1. Yin Sun, Árpád Baricz, and Shidong Zhou (2010) On the Monotonicity, Log-Concavity, and Tight Bounds of the Generalized Marcum and Nuttall Q-Functions. IEEE Transactions on Information Theory, 56(3), 1166-1186, ISSN 0018-9448


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.