Solar Challenger

From Wikipedia, the free encyclopedia

Solar Challenger was a solar-powered electric aircraft designed by Paul MacCready's AeroVironment. The aircraft was designed as an improvement on the Gossamer Penguin, which in turn was a solar-powered variant of the human-powered Gossamer Albatross.[1] It was powered entirely by the photovoltaic cells on its wing and stabilizer, without even reserve batteries, and was the first such craft capable of long-distance flight.[2] In 1981, it successfully completed a 163 mile (262 km) demonstration flight from France to England.[3]

History

The Solar Challenger was designed by a team led by Paul McCready as a more airworthy improvement on the Gossamer Penguin, directly incorporating lessons learned from flight testing the earlier aircraft.[4] As with the Gossamer Penguin, construction was sponsored by DuPont in exchange for publicity for the company's patented materials incorporated in the design. AstroFlight, Inc. supplied the motors, which were designed by Robert Boucher.[2] The plane's wings carried 16,128 solar cells yielding a maximum solar power of 3,800 watts.[4] On July 7, 1981, the aircraft flew 163 miles from Pontoise – Cormeilles Aerodrome, north of Paris, France to Manston Royal Air Force Base in Manston, United Kingdom, staying aloft 5 hours and 23 minutes, with pilot Stephen Ptacek at the controls.[3] Currently the plane is owned by the Smithsonian Institution's Air and Space Museum.[5]

Design

The Solar Challenger was designed to be sturdier, more powerful, and more maneuverable than the Gossamer Penguin so as to be able to withstand sustained high altitude flight and normal turbulence. It was over three times as heavy (without pilot) as the Gossamer Penguin and had a shorter wingspan, but was proportionately more powerful, with electricity supplied by 16,128 solar cells powering two three-horsepower motors. The solar panels were directly affixed to the wing and large horizontal stabilizer, both of which had to be flat on top to accommodate them. The two motors, each 3 inches wide and 17 inches long and incorporating samarium-cobalt permanent magnets, operated in tandem on a common shaft to drive a single, controllable pitch propeller. The design incorporated advanced synthetic materials with very high strength to weight ratios, including Kevlar, Nomex, Delrin, Teflon, and Mylar, all supplied by the aircraft's sponsor, Dupont.[2][3]

Specifications

Data from [2]

General characteristics

  • Crew: One
  • Capacity: One
  • Length: 29 ft 0 in (8.8 m)
  • Wingspan: 47 ft 0 in (14.3 m)
  • Empty weight: 205 lb (90 kg)
  • Gross weight: 350 lb (159 kg)
  • Powerplant: 2 × solar-powered electric motors, 3 hp (2.2 kW) each each

Performance

  • Maximum speed: 40 mph (64 km/h)
  • Range: 400 (projected) miles (645 projected km)
  • Endurance: 11 (projected) hours
  • Service ceiling: demonstrated 14,300 ft (4,360 m)
  • G limits: +6, -3
  • Rate of climb: 150 ft/min (0.765 m/s)
Armament
  • None

See also

Related development
Aircraft of comparable role, configuration and era

References

  1. Goebel, Greg, "Solar-Powered UAVS: HALSOL & Solar HAPP", The Prehistory Of Endurance UAVs, retrieved 2008-08-13 
  2. 2.0 2.1 2.2 2.3 Lindsey, Robert (June 9, 1981), "Physicist's Solar Airplane Set to Challenge the English Channel", New York Times 
  3. 3.0 3.1 3.2 Solar-Power Research and Dryden, Dryden Flight Research Center, NASA, retrieved 2008-08-13 
  4. 4.0 4.1 Solar Challenger - Exclusive first hand report, of Paul MacCready's solar powered aircraft project Martyn Cowley, with drawings by Pat Lloyd. Aeromodeller, June 1981
  5. "Solar-Plane Sets Height Record", Space Daily, August 6, 1998, retrieved 2008-08-13 .

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.