Luttinger parameter

From Wikipedia, the free encyclopedia

In semiconductors, valence bands are well characterized by 3 Luttinger parameters. At the Г-point in the band structure, p_{{3/2}} and p_{{1/2}} orbitals form valence bands. But spin-orbit coupling splits sixfold degeneracy into high energy 4-fold and lower energy 2-fold bands. Again 4-fold degeneracy is lifted into heavy- and light hole bands by phenomenological Hamiltonian by J. M. Luttinger.

Three valence band state

In the presence of spin-orbit interaction, total angular momentum should take part in. From the three valence band, l=1 and s=1/2 state generate six state of |j,mj> as |{3 \over 2},\pm {3 \over 2}\rangle ,|{3 \over 2},\pm {1 \over 2}\rangle ,|{1 \over 2},\pm {1 \over 2}\rangle

The spin-orbit interaction from the relativistic quantum mechanics, lowers the energy of j=1/2 states down.

Phenomenological Hamiltonian for the j=3/2 states

Phenomenological Hamiltonian in spherical approximation is written as[1]

H={{\hbar ^{2}} \over {2m_{0}}}[(\gamma _{1}+{{5} \over {2}}\gamma _{2}){\mathbf  {k}}^{2}-2\gamma _{2}({\mathbf  {k}}\cdot {\mathbf  {J}})^{2}]

Phenomenological Luttinger parameters \gamma _{i} are defined as

\alpha =\gamma _{1}+{5 \over 2}\gamma _{2}

and

\beta =\gamma _{2}

If we take {\mathbf  {k}} as {\mathbf  {k}}=k{\hat  {e}}_{z}, the Hamiltonian is diagonalized for j=3/2 states.

E={{\hbar ^{2}k^{2}} \over {2m_{0}}}(\gamma _{1}+{{5} \over {2}}\gamma _{2}-2\gamma _{2}m_{j}^{2})

Two degenerated resulting eigenenergies are

E_{{hh}}={{\hbar ^{2}k^{2}} \over {2m_{0}}}(\gamma _{1}-2\gamma _{2}) for m_{j}=\pm {3 \over 2}

E_{{lh}}={{\hbar ^{2}k^{2}} \over {2m_{0}}}(\gamma _{1}+2\gamma _{2}) for m_{j}=\pm {1 \over 2}

E_{{hh}} (E_{{lh}}) indicates heav-(light-) hole band energy. If we regard the electrons as nearly free electrons, the Luttinger parameters describe effective mass of electron in each bands.

Measurement of Luttinger parameters

Luttinger parameter can be measured by Hot-electron luminescence experiment.

Example: GaAs

\epsilon _{{h,l}}=-{{1} \over {2}}\gamma _{{1}}k^{{2}}\pm [{\gamma _{{2}}}^{{2}}k^{{4}}+3({\gamma _{{3}}}^{{2}}-{\gamma _{{2}}}^{{2}})\times ({k_{{x}}}^{{2}}{k_{{z}}}^{{2}}+{k_{{x}}}^{{2}}{k_{{y}}}^{{2}}+{k_{{y}}}^{{2}}{k_{{z}}}^{{2}})]^{{1/2}}

References

  1. Hartmut Haug, Stephan W. Koch (2004). Quantum Theory of the Optical and Electronic Properties of Semiconductors (4th ed.). World Scientific. p. 46. 

See also

  • J. M. Luttinger, Physical Review, Vol. 102, 1030 (1956). APS
  • A. Baldereschi and N.O. Lipari, Physical Review B., Vol. 8, pp. 2675 (1973). APS
  • A. Baldereschi and N.O. Lipari, Physical Review B., Vol. 9, pp. 1525 (1974). APS
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.