Load cell
A load cell is a transducer that is used to convert a force into an electrical signal. This conversion is indirect and happens in two stages. Through a mechanical arrangement, the force being sensed deforms a strain gauge. The strain gauge measures the deformation (strain) as an electrical signal, because the strain changes the effective electrical resistance of the wire. A load cell usually consists of four strain gauges in a Wheatstone bridge configuration. Load cells of one strain gauge (quarter bridge) or two strain gauges (half bridge) are also available.[1] The electrical signal output is typically in the order of a few millivolts and requires amplification by an instrumentation amplifier before it can be used. The output of the transducer can be scaled to calculate the force applied to the transducer. The various types of load cells that exist include Hydraulic load cells, Pneumatic load cells and Strain gauge load cells.
Hydraulic load cell
The cell uses conventional piston and cylinder arrangement. The piston is placed in a thin elastic diaphragm. The piston doesn't actually come in contact with the load cell. Mechanical stops are placed to prevent over strain of the diaphragm when the loads exceed certain limit. The load cell is completely filled with oil. When the load is applied on the piston, the movement of the piston and the diaphragm arrangement result in an increase of oil pressure which in turn produces a change in the pressure on a Bourdon tube connected with the load cells.
Pneumatic load cell
The load cell is designed to automatically regulate the balancing pressure. Air pressure is applied to one end of the diaphragm and it escapes through the nozzle placed at the bottom of the load cell. A pressure gauge is attached with the load cell to measure the pressure inside the cell. The deflection of the diaphragm affects the airflow through the nozzle as well as the pressure inside the chamber.
Strain gauge load cell
Strain gauge load cells are the most common in industry. These load cells are particularly stiff, have very good resonance values, and tend to have long life cycles in application. Strain gauge load cells work on the principle that the strain gauge (a planar resistor) deforms/stretches/contracts when the material of the load cells deforms appropriately. These values are extremely small and are relational to the stress and/or strain that the material load cell is undergoing at the time. The change in resistance of the strain gauge provides an electrical value change that is calibrated to the load placed on the load cell.
Other types of load cells in industrial applications are piezoelectric, hydraulic (or hydrostatic), and semiconductor are probably the second most common. By example, a hydraulic load cell is immune to transient voltages (lightning) so these type of load cells might be a more effective device in outdoor environments. Piezoelectric load cells work on the same principle of deformation as the strain gauge load cells, but a voltage output is generated by the basic piezo material - proportional to the deformation of load cell. Most applications for piezo-based load cells are in the dynamic loading conditions, where strain gauge load cells can fail with high dynamic loading cycles.
Other types
Other types include piezoelectric load cells (useful for dynamic measurements of force), and vibrating wire load cells, which are useful in geomechanical applications due to low amounts of drift, and capacitive load cells where the capacitance of a capacitor changes as the load presses the two plates of a capacitor closer together.
Ringing
Every load cell is subject to "ringing" when subjected to abrupt load changes. This stems from the spring-like behavior of load cells. In order to measure the loads, they have to deform. As such, a load cell of finite stiffness must have spring-like behavior, exhibiting vibrations at its natural frequency. An oscillating data pattern can be the result of ringing. Ringing can be suppressed in a limited fashion by passive means. Alternatively, a control system can use an actuator to actively damp out the ringing of a load cell. This method offers better performance at a cost of significant increase in complexity.
Uses
Load cells are used in several types of measuring instruments such as universal testing machines.[2]
References
- ↑ "Wheatstone Bridge Diagrams and Equations". Transducer Techniques.
- ↑ "Load cell testing gets straight to the point". Maritime Journal (Mercator Media). 20 December 2010.
See also
Standards
- ASTM E4 - Practices for Force Verification of Testing Machines
- ASTM E74 - Practice for Calibration of Force Measuring Instruments for Verifying the Force Indication of Testing Machines
External links
- "Straightpoint unveils massive calibration machine". 21 September 2010.