Leibniz algebra

From Wikipedia, the free encyclopedia

In mathematics, a (right) Leibniz algebra, named after Gottfried Wilhelm Leibniz, sometimes called a Loday algebra, after Jean-Louis Loday, is a module L over a commutative ring R with a bilinear product [ _ , _ ] satisfying the Leibniz identity

[[a,b],c]=[a,[b,c]]+[[a,c],b].\,

In other words, right multiplication by any element c is a derivation. If in addition the bracket is alternating ([a, a] = 0) then the Leibniz algebra is a Lie algebra. Indeed, in this case [a, b] = [b, a] and the Leibniz's identity is equivalent to Jacobi's identity ([a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0). Conversely any Lie algebra is obviously a Leibniz algebra.

The tensor module, T(V) , of any vector space V can be turned into a Loday algebra such that

[a_{1}\otimes \cdots \otimes a_{n},x]=a_{1}\otimes \cdots a_{n}\otimes x\quad {\text{for }}a_{1},\ldots ,a_{n},x\in V.

This is the free Loday algebra over V.

Leibniz algebras were discovered by A.Bloh in 1965 who called them D-algebras. They attracted interest after Jean-Louis Loday noticed that the classical Chevalley–Eilenberg boundary map in the exterior module of a Lie algebra can be lifted to the tensor module which yields a new chain complex. In fact this complex is well-defined for any Leibniz algebra. The homology HL(L) of this chain complex is known as Leibniz homology. If L is the Lie algebra of (infinite) matrices over an associative R-algebra A then Leibniz homology of L is the tensor algebra over the Hochschild homology of A.

A Zinbiel algebra is the Koszul dual concept to a Leibniz algebra. It has defining identity:

(a\circ b)\circ c=a\circ (b\circ c)+a\circ (c\circ b).

References

  • Kosmann-Schwarzbach, Yvette (1996). "From Poisson algebras to Gerstenhaber algebras". Annales de l'Institut Fourier 46 (5): 1243–1274. 
  • Loday, Jean-Louis (1993). "Une version non commutative des algèbres de Lie: les algèbres de Leibniz". Enseign. Math. (2) 39 (34): 269–293. 
  • Loday, Jean-Louis & Teimuraz, Pirashvili (1993). "Universal enveloping algebras of Leibniz algebras and (co)homology". Mathematische Annalen 296 (1): 139–158. doi:10.1007/BF01445099. 
  • Bloh, A. (1965). "On a generalization of the concept of Lie algebra". Dokl. Akad. Nauk SSSR 165: 471–473. 
  • Bloh, A. (1967). "Cartan-Eilenberg homology theory for a generalized class of Lie algebras". Dokl. Akad. Nauk SSSR 175 (8): 824–826. 
  • Dzhumadil'daev, A.S.; Tulenbaev, K.M. (2005). "Nilpotency of Zinbiel algebras". J. Dyn. Control Syst. 11 (2): 195–213. 
  • Ginzburg, V.; Kapranov, M. (1994). "Koszul duality for operads". Duke Math. J. 76: 203–273. arXiv:0709.1228. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.