Lehmer number

From Wikipedia, the free encyclopedia

In mathematics, a Lehmer number is a generalization of a Lucas sequence.

Algebraic relations

If a and b are complex numbers with

a+b={\sqrt  {R}}
ab=Q

under the following conditions:

Then, the corresponding Lehmer numbers are:

U_{n}({\sqrt  {R}},Q)={\frac  {a^{n}-b^{n}}{a-b}}

for n odd, and

U_{n}({\sqrt  {R}},Q)={\frac  {a^{n}-b^{n}}{a^{2}-b^{2}}}

for n even.

Their companion numbers are:

V_{n}({\sqrt  {R}},Q)={\frac  {a^{n}+b^{n}}{a+b}}

for n odd and

V_{n}({\sqrt  {R}},Q)=a^{n}+b^{n}

for n even.

Recurrence

Lehmer numbers form a linear recurrence relation with

U_{n}=(R-2Q)U_{{n-2}}-Q^{2}U_{{n-4}}=(a^{2}+b^{2})U_{{n-2}}-a^{2}b^{2}U_{{n-4}}

with initial values U_{0}=0,U_{1}=1,U_{2}=1,U_{3}=R-Q=a^{2}+ab+b^{2}. Similarly the companions sequence satisfies

V_{n}=(R-2Q)V_{{n-2}}-Q^{2}V_{{n-4}}=(a^{2}+b^{2})V_{{n-2}}-a^{2}b^{2}V_{{n-4}}

with initial values V_{0}=2,V_{1}=1,V_{2}=R-2Q=a^{2}+b^{2},V_{3}=R-3Q=a^{2}-ab+b^{2}.

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.