Launch escape system

From Wikipedia, the free encyclopedia
Apollo LES pad abort test with boilerplate crew module.
Apollo spacecraft: Apollo Launch Escape System.

A Launch Escape System (LES) is a system connected to the crew module of a crewed spacecraft and used to quickly separate the crew module from the rest of the rocket in case of emergency. The LES is designed for use in situations where there is an imminent threat to the crew, such as an impending explosion.

History

The idea of using a rocket to remove the capsule from a space vehicle was developed by Maxime Faget in 1958.[1] The system, using the tower on the top of the space capsule to house rockets, was first used on a test of the Project Mercury capsule in March 1959. Historically, LESes were used on American Mercury and Apollo spacecraft. Both designs used a solid-fuel rocket motor. The Mercury LES was built by the Grand Central Rocket Company in Redlands, California (which later became the Lockheed Propulsion Company). Apollo used a design that had many similarities to the Mercury system. Launch Escape Systems continue to be used on the Russian Soyuz and Chinese Shenzhou programme spacecraft. The SpaceX-designed Dragon spacecraft uses a liquid fueled launch abort system integrated to the capsule to minimize spacecraft costs.

The LES may be used while the launch vehicle is still on the launch pad, or during its ascent.

Related systems

A Dragon Rider Mockup showing the LES engines mounted on the outside

The Russian Vostok and American Gemini spacecraft both made use of ejection seats. The European Space Agency's Hermes and the Russian Buran space planes would also have made use of them if they had ever flown with crews. As shown by Soyuz T-10a, an LES must be able to carry a crew compartment from the launch pad to a height sufficient for its parachutes to open. Consequently, they must make use of large, powerful (and heavy) solid rockets. The Soyuz launch escape system is called CAC or SAS, from the Russian/transliterated Russian Система Аварийного Спасения or Sistema Avariynogo Spaseniya, meaning emergency rescue system.[2]

The Space Shuttle was fitted with ejection seats for the initial "shakedown" flights, but these were removed once the vehicle was deemed operational. Following the Challenger disaster, all surviving orbiters were fitted to allow for crew evacuation through the main hatch, though this could only be used when the shuttle was in a controlled glide (the crew would have had to reach the exit from their seats and jump out, then return to earth via parachute).

The Multi-Purpose Crew Vehicle being developed to follow the shuttle program will use a Mercury and Apollo-style escape rocket system, while an alternative system, called the Max Launch Abort System (MLAS),[3] has been floated to use existing solid-rocket motors integrated into the bullet-shaped protective launch shroud.

Under NASA's Commercial Crew Development (CCDev) program Blue Origin has been awarded $3.7 million for development an innovative 'pusher' LAS.[4]

Also under NASA's CCDev program, SpaceX was awarded $75 million for the development of their own version of a "pusher" LAS.[5]

Orbital Sciences Corporation intends to sell the LAS it was building for the Orion spacecraft to future commercial crew vehicle providers in the wake of cancellation of the Constellation project.[6]

Usage

The first fully operational test flight of an LES was Apollo mission A-004 on January 20, 1966. The mission used a Little Joe II booster, carrying an early version of the Apollo Command/Service Module.

Soviet officers watch as the Soyuz T-10 capsule aborts from the launch pad.

Only one emergency use of an LES has occurred. This occurred during the attempt to launch Soyuz T-10-1 on September 26, 1983. The rocket caught fire, just before launch, and the LES carried the crew capsule clear, seconds before the rocket exploded. The crew were subjected to an acceleration of 14 to 17 g (140 to 170 m/s²) for five seconds. Reportedly, the capsule reached an altitude of 2,000 meters (6,500 ft) and landed 4 kilometers (2.5 mi) from the launch pad. The Soyuz LES system also has grid fins mounted on the payload fairing that deploy to stabilize the craft.

The escape system unintentionally blasted off from the Mercury spacecraft on the failed Mercury-Redstone 1 mission

A previous launch accident occurred during the flight of Soyuz 18a on April 5, 1975. In this case, the incident took place at high altitude, after the LES of the Soyuz had been discarded.[7] The spacecraft automatically separated from the malfunctioning rocket and completed a successful re-entry.

See also

  • Apollo spacecraft
  • Apollo abort modes
  • Pad Abort Test-1 - Launch Escape System (LES) abort test from launch pad with Apollo Boilerplate BP-6.
  • Pad Abort Test-2 - LES pad abort test of near Block-I CM with Apollo Boilerplate B-23A.

References

 This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.

  1. "astronautix Escape Tower". 
  2. http://suzymchale.com/ruspace/soyescape.html
  3. NASA Spaceflight: Orion MLAS
  4. Jeff Foust. "Blue Origin proposes orbital vehicle". 
  5. Frank Morring, Jr. "NASA Provides Seed Money For CCDev-2". 
  6. Stephen Clark. "Orbital sees bright future for Orion launch abort system". 
  7. Shayler, David (2000). Disasters and Accidents in Manned Space Flight. Springer Praxis. p. 157. ISBN 1-85233-225-5. 

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.