Lamb–Oseen vortex

From Wikipedia, the free encyclopedia

In fluid dynamics, the Lamb–Oseen vortex models a line vortex that decays due to viscosity. This vortex is named after Horace Lamb and Carl Wilhelm Oseen.[1]

The mathematical model for the flow velocity in the circumferential \theta –direction in the Lamb–Oseen vortex is:

V_{\theta }(r,t)={\frac  {\Gamma }{2\pi r}}\left(1-\exp \left({\frac  {-r^{2}}{r_{c}^{2}(t)}}\right)\right),

with

  • r = radius,
  • \nu = viscosity,
  • r_{c}(t)={\sqrt  {4\nu t}} = core radius of vortex and
  • \Gamma = circulation contained in the vortex.

The radial velocity is equal to zero.

An alternative definition is to use the peak tangential velocity of the vortex rather than the total circulation

V_{\theta }\left(r\right)=V_{{\theta \max }}\left(1+{\frac  {0.5}{\alpha }}\right){\frac  {r_{c}}{r}}\left[1-\exp \left(-\alpha {\frac  {r^{2}}{r_{c}^{2}}}\right)\right],

where α = 1.25643 as used by Devenport et al.[2]

References

  1. Saffman, P. G.; Ablowitz, Mark J.; J. Hinch, E.; Ockendon, J. R.; Olver, Peter J. (1992). Vortex dynamics. Cambridge: Cambridge University Press. ISBN 0-521-47739-5.  p. 253.
  2. W.J. Devenport, M.C. Rife, S.I. Liapis and G.J. Follin (1996). "The structure and development of a wing-tip vortex". Journal of Fluid Mechanics 312: 67–106. Bibcode:1996JFM...312...67D. doi:10.1017/S0022112096001929. 


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.