King's graph
King's graph | |
---|---|
8x8 King's graph | |
Vertices | nm |
Edges | 4nm-3(n+m)+2 |
In graph theory, a king's graph is a graph that represents all legal moves of the king chess piece on a chessboard where each vertex represents a square on a chessboard and each edge is a legal move. More specifically, an king's graph is a king's graph of an chessboard.[1]
For a king's graph the total number of vertices is simply . For a king's graph the total number of vertices is simply and the total number of edges is .[2]
The neighbourhood of a vertex in the king's graph corresponds to the Moore neighborhood for cellular automata.[3] A generalization of the king's graph, called a kinggraph, is formed from a squaregraph (a planar graph in which each bounded face is a quadrilateral and each interior vertex has at least four neighbors) by adding the two diagonals of every quadrilateral face of the squaregraph.[4]
References
- ↑ Chang, Gerard J. (1998), "Algorithmic aspects of domination in graphs", in Du, Ding-Zhu; Pardalos, Panos M., Handbook of combinatorial optimization, Vol. 3, Boston, MA: Kluwer Acad. Publ., pp. 339–405, MR 1665419. Chang defines the king's graph on p. 341.
- ↑ "Sloane's A002943 ", The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ Smith, Alvy Ray (1971), "Two-dimensional formal languages and pattern recognition by cellular automata", 12th Annual Symposium on Switching and Automata Theory, pp. 144–152, doi:10.1109/SWAT.1971.29.
- ↑ Chepoi, Victor; Dragan, Feodor; Vaxès, Yann (2002), "Center and diameter problems in plane triangulations and quadrangulations", Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '02), pp. 346–355.