Joseph Fourier
Joseph Fourier | |
---|---|
Jean Baptiste Joseph Fourier | |
Born |
Auxerre, Burgundy, Kingdom of France (now in Yonne, France) | 21 March 1768
Died |
16 May 1830 62) Paris, Kingdom of France | (aged
Residence | France |
Nationality | French |
Fields | Mathematician, Physicist, and historian |
Institutions |
École Normale École Polytechnique |
Alma mater | École Normale |
Doctoral advisor | Joseph-Louis Lagrange |
Doctoral students |
Peter Gustav Lejeune Dirichlet Giovanni Plana Claude-Louis Navier |
Known for |
Fourier series Fourier transform Fourier's law of conduction |
Jean Baptiste Joseph Fourier (21 March 1768 – 16 May 1830) was a French mathematician and physicist born in Auxerre and best known for initiating the investigation of Fourier series and their applications to problems of heat transfer and vibrations. The Fourier transform and Fourier's Law are also named in his honour. Fourier is also generally credited with the discovery of the greenhouse effect.[2]
Biography
Fourier was born at Auxerre (now in the Yonne département of France), the son of a tailor. He was orphaned at age nine. Fourier was recommended to the Bishop of Auxerre, and through this introduction, he was educated by the Benedictine Order of the Convent of St. Mark. The commissions in the scientific corps of the army were reserved for those of good birth, and being thus ineligible, he accepted a military lectureship on mathematics. He took a prominent part in his own district in promoting the French Revolution, serving on the local Revolutionary Committee. He was imprisoned briefly during the Terror but in 1795 was appointed to the École Normale Supérieure, and subsequently succeeded Joseph-Louis Lagrange at the École Polytechnique.
Fourier accompanied Napoleon Bonaparte on his Egyptian expedition in 1798, as scientific adviser, and was appointed secretary of the Institut d'Égypte. Cut off from France by the English fleet, he organized the workshops on which the French army had to rely for their munitions of war. He also contributed several mathematical papers to the Egyptian Institute (also called the Cairo Institute) which Napoleon founded at Cairo, with a view of weakening English influence in the East. After the British victories and the capitulation of the French under General Menou in 1801, Fourier returned to France.
In 1801,[3] Napoleon appointed Fourier Prefect (Governor) of the Department of Isère in Grenoble, where he oversaw road construction and other projects. However, Fourier had previously returned home from the Napoleon expedition to Egypt to resume his academic post as professor at École Polytechnique when Napoleon decided otherwise in his remark
... the Prefect of the Department of Isère having recently died, I would like to express my confidence in citizen Fourier by appointing him to this place.[3]
Hence being faithful to Napoleon, he took the office of Prefect.[3] It was while at Grenoble that he began to experiment on the propagation of heat. He presented his paper On the Propagation of Heat in Solid Bodies to the Paris Institute on December 21, 1807. He also contributed to the monumental Description de l'Égypte.[4]
Fourier moved to England in 1816. Later, he returned to France, and in 1822 succeeded Jean Baptiste Joseph Delambre as Permanent Secretary of the French Academy of Sciences. In 1830, he was elected a foreign member of the Royal Swedish Academy of Sciences.
In 1830, his diminished health began to take its toll:
Fourier had already experienced, in Egypt and Grenoble, some attacks of aneurism of the heart. At Paris, it was impossible to be mistaken with respect to the primary cause of the frequent suffocations which he experienced. A fall, however, which he sustained on the 4th of May 1830, while descending a flight of stairs, aggravated the malady to an extent beyond what could have been ever feared.[5]Shortly after this event, he died in his bed on 16 May 1830.
Fourier was buried in the Père Lachaise Cemetery in Paris, a tomb decorated with an Egyptian motif to reflect his position as secretary of the Cairo Institute, and his collation of Description de l'Égypte. His name is one of the 72 names inscribed on the Eiffel Tower.
Rosetta Stone
In 1801, Fourier returned from Egypt on the Napoleon expedition with many artifacts including an ink pressed copy of the Rosetta Stone. The original stone was discovered in 1799,[6] and by 1802, a translation of the ancient Greek text had already been popularly printed.
Born in 1790 as the seventh son to an impoverished family, young Jean-Francois Champollion joined his elder brother at Académie de Grenoble in 1801; Fourier became Prefect of Grenoble the same year.[6] Champollion was quickly recognized as a virtuoso and self-educated linguist. In an honorable meeting, Fourier happened to introduce Champollion at age 11 to an ink pressed copy of the Rosetta Stone where, being amazed that none had deciphered its meaning, he resolutely dedicated himself to the translation of ancient Egyptian.[6][7] In 1806, Champollion with the continued support of Fourier and his elder brother, Jacques, presented a paper on Coptic at Académie de Grenoble with insight to ancient Egyptian. Furthermore in 1809, Champollion returned after 2 years in Paris to Académie de Grenoble after being helped by Fourier to gain exemption from military service.[6] Ultimately, Fourier's first influential encounter with Champollion and subsequent relationship largely supported Champollion's translation of ancient Egyptian from 1822 to 1824 when he finally gained widespread fame for his breakthrough publication.
The Analytic Theory of Heat
In 1822 Fourier published his work on heat flow in Théorie analytique de la chaleur (The Analytic Theory of Heat),[8] in which he based his reasoning on Newton's law of cooling, namely, that the flow of heat between two adjacent molecules is proportional to the extremely small difference of their temperatures. This book was translated,[9] with editorial 'corrections',[10] into English 56 years later by Freeman (1878).[11] The book was also edited, with many editorial corrections, by Darboux and republished in French in 1888.[10]
There were three important contributions in this work, one purely mathematical, two essentially physical. In mathematics, Fourier claimed that any function of a variable, whether continuous or discontinuous, can be expanded in a series of sines of multiples of the variable. Though this result is not correct, Fourier's observation that some discontinuous functions are the sum of infinite series was a breakthrough. The question of determining when a Fourier series converges has been fundamental for centuries. Joseph-Louis Lagrange had given particular cases of this (false) theorem, and had implied that the method was general, but he had not pursued the subject. Peter Gustav Lejeune Dirichlet was the first to give a satisfactory demonstration of it with some restrictive conditions.
One physical contribution in the book was the concept of dimensional homogeneity in equations; i.e. an equation can be formally correct only if the dimensions match on either side of the equality; Fourier made important contributions to dimensional analysis.[12] The other physical contribution was Fourier's proposal of his partial differential equation for conductive diffusion of heat. This equation is now taught to every student of mathematical physics.
Determinate equations
Fourier left an unfinished work on determinate equations which was edited by Claude-Louis Navier and published in 1831. This work contains much original matter — in particular, there is a demonstration of Fourier's theorem on the position of the roots of an algebraic equation. Joseph-Louis Lagrange had shown how the roots of an algebraic equation might be separated by means of another equation whose roots were the squares of the differences of the roots of the original equation. François Budan, in 1807 and 1811, had enunciated the theorem generally known by the name of Fourier, but the demonstration was not altogether satisfactory. Fourier's proof[13] is the same as that usually given in textbooks on the theory of equations. The final solution of the problem was given in 1829 by Jacques Charles François Sturm.
Discovery of the greenhouse effect
In the 1820s Fourier calculated that an object the size of the Earth, and at its distance from the Sun, should be considerably colder than the planet actually is if warmed by only the effects of incoming solar radiation. He examined various possible sources of the additional observed heat in articles published in 1824[14] and 1827.[15] While he ultimately suggested that interstellar radiation might be responsible for a large portion of the additional warmth, Fourier's consideration of the possibility that the Earth's atmosphere might act as an insulator of some kind is widely recognized as the first proposal of what is now known as the greenhouse effect.[16]
In his articles, Fourier referred to an experiment by de Saussure,[17] who lined a vase with blackened cork. Into the cork, he inserted several panes of transparent glass, separated by intervals of air. Midday sunlight was allowed to enter at the top of the vase through the glass panes. The temperature became more elevated in the more interior compartments of this device. Fourier concluded that gases in the atmosphere could form a stable barrier like the glass panes.[18] This conclusion may have contributed to the later use of the metaphor of the 'greenhouse effect' to refer to the processes that determine atmospheric temperatures.[19] Fourier noted that the actual mechanisms that determine the temperatures of the atmosphere included convection, which was not present in de Saussure's experimental device.
Works
- Fourier, Joseph (1822). Théorie analytique de la chaleur. Paris: Firmin Didot Père et Fils.
- Fourier, Joseph (1824). Annales de chimie et de physique 27. Paris: Annals of Chemistry and Physics. pp. 236–281.
- Fourier, Joseph (1827). Mémoire sur la température du globe terrestre et des espaces planétaires 7. Memoirs of the Royal Academy of Sciences of the Institut de France. pp. 569–604.
- Fourier, Joseph (1827). 'academie+des+sciences.langEN Mémoire sur la distinction des racines imaginaires, et sur l'application des théorèmes d'analyse algébrique aux équations transcendantes qui dépendent de la théorie de la chaleur 7. Memoirs of the Royal Academy of Sciences of the Institut de France. pp. 605–624.
- Fourier, Joseph (1827). Analyse des équations déterminées 10. Firmin Didot frères. pp. 119–146.
- Fourier, Joseph (1827). Remarques générales sur l'application du principe de l'analyse algébrique aux équations transcendantes 10. Paris: Memoirs of the Royal Academy of Sciences of the Institut de France. pp. 119–146.
- Fourier, Joseph (1833). Mémoire d'analyse sur le mouvement de la chaleur dans les fluides 12. Paris: Memoirs of the Royal Academy of Sciences of the Institut de France. pp. 507–530.
- Fourier, Joseph (1821). Rapport sur les tontines 5. Paris: Memoirs of the Royal Academy of Sciences of the Institut de France. pp. 26–43.
See also
- Fourier analysis
- Fourier number
- Fourier–Deligne transform
- Fourier's Law
- Heat equation
References
- ↑ Boilly, Julien-Leopold. (1820). Album de 73 Portraits-Charge Aquarelle’s des Membres de I’Institute (watercolor portrait #29). Biliotheque de l’Institut de France.
- ↑ Cowie, J. (2007). Climate Change: Biological and Human Aspects. Cambridge University Press. p. 3. ISBN 978-0-521-69619-7.
- ↑ 3.0 3.1 3.2 "Jean-Baptiste Fourier". Retrieved 4 April 2012.
- ↑ Nowlan, Robert. A Chronicle of Mathematical People ([www.robertnowlan.com/pdfs/Fourier,%20Joseph.pdf])
- ↑ Arago, François (1857). Biographies of Distinguished Scientific Men.
- ↑ 6.0 6.1 6.2 6.3 "Gallery of Philologists: Jean-Francios Champollion". Retrieved 4 April 2012.
- ↑ "The Mystery of the Rosetta Stone Part II". Retrieved 4 April 2012.
- ↑ Fourier, Joseph (1822). Théorie analytique de la chaleur (in French). Paris: Firmin Didot Père et Fils. OCLC 2688081.
- ↑ Freeman, A. (1878). The Analytical Theory of Heat, Cambridge University Press, Cambridge UK, cited by Truesdell, C.A. (1980), The Tragicomical History of Thermodynamics, 1822–1854, Springer, New York, ISBN 0-387-90403-4, page 52.
- ↑ 10.0 10.1 Truesdell, C.A. (1980). The Tragicomical History of Thermodynamics, 1822–1854, Springer, New York, ISBN 0-387-90403-4, page 52.
- ↑ Digital Image Processing by Rafeel Gonzalez and Richard E Woods ,Third Edition , Pg 200 , PHI Eastern Economy Edition.
- ↑ Mason, Stephen F.: A History of the Sciences (Simon & Schuster, 1962), p. 169.
- ↑ Fourier, Jean Baptiste Joseph (1820). "Sur l'usage du théorème de Descartes dans la recherche des limites des racines". Bulletin des Sciences, par la Société Philomatique de Paris: 156–165.
- ↑ Fourier J (1824). "Remarques Générales Sur Les Températures Du Globe Terrestre Et Des Espaces Planétaires". Annales de Chimie et de Physique 27: 136–67.
- ↑ Fourier J (1827). "Mémoire Sur Les Températures Du Globe Terrestre Et Des Espaces Planétaires". Mémoires de l'Académie Royale des Sciences 7: 569–604.
- ↑ Weart, S. (2008). The Carbon Dioxide Greenhouse Effect. Retrieved on 27 May 2008
- ↑ fr:Horace-Bénédict de Saussure
- ↑ Translation by W M Connolley of: Fourier 1827: MEMOIRE sur les temperatures du globe terrestre et des espaces planetaires
- ↑ Osman, Jheni (2011), 100 Ideas that Changed the World, Random House, p. 65, ISBN 9781446417485, "[Fourier] didn't call his discovery the greenhouse effect but future scientists named it that after an experiment by [de Saussure] which influenced Fourier's work".
Further reading
- Initial text from the public domain Rouse History of Mathematics
- Fourier, Joseph. (1822). Theorie Analytique de la Chaleur. Firmin Didot (reissued by Cambridge University Press, 2009; ISBN 978-1-108-00180-9)
- Fourier, Joseph. (1878). The Analytical Theory of Heat. Cambridge University Press (reissued by Cambridge University Press, 2009; ISBN 978-1-108-00178-6)
- Fourier, J.-B.-J. (1824). Mémoires de l'Académie Royale des Sciences de l'Institut de France VII. 570–604 (Mémoire sur Les Temperatures du Globe Terrestre et Des Espaces Planetaires – greenhouse effect essay published in 1827)
- The Project Gutenberg EBook of Biographies of Distinguished Scientific Men by François Arago
- Fourier, J. Éloge historique de Sir William Herschel, prononcé dans la séance publique de l'Académie royale des sciences le 7 Juin, 1824. Historie de l'Académie Royale des Sciences de l'Institut de France, tome vi., année 1823, p. lxi.[Pg 227]
External links
Wikisource has the text of a 1906 New International Encyclopedia article about Joseph Fourier. |
Wikiquote has a collection of quotations related to: Joseph Fourier |
- O'Connor, John J.; Robertson, Edmund F., "Joseph Fourier", MacTutor History of Mathematics archive, University of St Andrews.
- Fourier, J. B. J., 1824, Remarques Générales Sur Les Températures Du Globe Terrestre Et Des Espaces Planétaires., in Annales de Chimie et de Physique, Vol. 27, pp. 136–167 – translation by Burgess (1837).
- Fourier 1827: MEMOIRE sur les températures du globe terrestre et des espaces planétaires
- Université Joseph Fourier, Grenoble, France
- Joseph Fourier and the Vuvuzela on MathsBank.co.uk
- Joseph Fourier at the Mathematics Genealogy Project
- Joseph Fourier – Œuvres complètes, tome 2 Gallica-Math
- Joseph Fourier, Théorie analytique de la chaleur Google books
|
|