Itō isometry

From Wikipedia, the free encyclopedia

In mathematics, the Itō isometry, named after Kiyoshi Itō, is a crucial fact about Itō stochastic integrals. One of its main applications is to enable the computation of variances for stochastic processes.

Let W:[0,T]\times \Omega \to {\mathbb  {R}} denote the canonical real-valued Wiener process defined up to time T>0, and let X:[0,T]\times \Omega \to {\mathbb  {R}} be a stochastic process that is adapted to the natural filtration {\mathcal  {F}}_{{*}}^{{W}} of the Wiener process. Then

{\mathbb  {E}}\left[\left(\int _{{0}}^{{T}}X_{{t}}\,{\mathrm  {d}}W_{{t}}\right)^{{2}}\right]={\mathbb  {E}}\left[\int _{{0}}^{{T}}X_{{t}}^{{2}}\,{\mathrm  {d}}t\right],

where {\mathbb  {E}} denotes expectation with respect to classical Wiener measure \gamma . In other words, the Itō stochastic integral, as a function, is an isometry of normed vector spaces with respect to the norms induced by the inner products

(X,Y)_{{L^{{2}}(W)}}:={\mathbb  {E}}\left(\int _{{0}}^{{T}}X_{{t}}\,{\mathrm  {d}}W_{{t}}\int _{{0}}^{{T}}Y_{{t}}\,{\mathrm  {d}}W_{{t}}\right)=\int _{{\Omega }}\left(\int _{{0}}^{{T}}X_{{t}}\,{\mathrm  {d}}W_{{t}}\int _{{0}}^{{T}}Y_{{t}}\,{\mathrm  {d}}W_{{t}}\right)\,{\mathrm  {d}}\gamma (\omega )

and

(A,B)_{{L^{{2}}(\Omega )}}:={\mathbb  {E}}(AB)=\int _{{\Omega }}A(\omega )B(\omega )\,{\mathrm  {d}}\gamma (\omega ).

References

  • Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin. ISBN 3-540-04758-1. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.