Isotopes of xenon
Naturally occurring xenon (Xe) is made of eight stable isotopes. (124Xe, 126Xe, and 134Xe are predicted to undergo double beta decay, but this has never been observed in these isotopes, so they are considered to be stable.)[1][2] Xenon has the second highest number of stable isotopes. Only tin, with 10 stable isotopes, has more.[3] Beyond these stable forms, there are over 30 unstable isotopes and isomers that have been studied, the longest-lived of which is 136Xe which undergoes double beta decay with a half-life of 2.38 ± 0.02 ± 0.14×1021 years[4] with the next longest lived being 127Xe with a half-life of 36.345 days. Of known isomers, the longest-lived is 131mXe with a half-life of 11.934 days. 129Xe is produced by beta decay of 129I (half-life: 16 million years); 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, and therefore used as indicators of nuclear explosions.
The artificial isotope 135Xe is of considerable significance in the operation of nuclear fission reactors. 135Xe has a huge cross section for thermal neutrons, 2.65×106 barns, so it acts as a neutron absorber or "poison" that can slow or stop the chain reaction after a period of operation. This was discovered in the earliest nuclear reactors built by the American Manhattan Project for plutonium production. Fortunately the designers had made provisions in the design to increase the reactor's reactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel).
Relatively high concentrations of radioactive xenon isotopes are also found emanating from nuclear reactors due to the release of this fission gas from cracked fuel rods or fissioning of uranium in cooling water. The concentrations of these isotopes are still usually low compared to the naturally occurring radioactive noble gas 222Rn.
Because xenon is a tracer for two parent isotopes, Xe isotope ratios in meteorites are a powerful tool for studying the formation of the solar system. The I-Xe method of dating gives the time elapsed between nucleosynthesis and the condensation of a solid object from the solar nebula (Xenon being a gas, only that part of it which formed after condensation will be present inside the object). Xenon isotopes are also a powerful tool for understanding terrestrial differentiation. Excess 129Xe found in carbon dioxide well gases from New Mexico was believed to be from the decay of mantle-derived gases soon after Earth's formation.[5]
Standard atomic mass: 131.293(6) u
All other isotopes have half-lives less than 12 days, most less than 20 hours. The shortest-lived isotope is 148Xe with a half-life of 408 ns. Its 41 isotopes have mass numbers ranging from 108 to 148.
108Xe (disc. 2011) is the second heaviest nuclide with equal numbers of protons and neutrons, after 112Ba.
Xenon-133
Isotopes of xenon | |
---|---|
General | |
Name, symbol | Isotopes of xenon,133Xe |
Neutrons | 79 |
Protons | 54 |
Nuclide data | |
Natural abundance | syn |
Half-life | 5.243 d (1) |
Decay products | 133Cs |
Isotope mass | 132.9059107 u |
Spin | 3/2+ |
Decay mode | Decay energy |
Beta− | 0.427 MeV |
Xenon-133 (sold as a drug under the brand name Xeneisol, ATC code V09EX03) is an isotope of xenon. It is a radionuclide that was inhaled to assess pulmonary function, and to image the lungs,[6] but is now discontinued.[7] It was also used to image blood flow, particularly in the brain.[8] 133Xe is also an important fission product.[citation needed]
Xenon-135
Xenon-136
Xenon-136 is an isotope of xenon. It undergoes double beta decay.
Table
nuclide symbol |
Z(p) | N(n) | isotopic mass (u) |
half-life | decay mode(s)[9][n 1] |
daughter isotope(s)[n 2] |
nuclear spin |
representative isotopic composition (mole fraction) |
range of natural variation (mole fraction) |
---|---|---|---|---|---|---|---|---|---|
excitation energy | |||||||||
110Xe | 54 | 56 | 109.94428(14) | 310(190) ms [105(+35-25) ms] |
β+ | 110I | 0+ | ||
α | 106Te | ||||||||
111Xe | 54 | 57 | 110.94160(33)# | 740(200) ms | β+ (90%) | 111I | 5/2+# | ||
α (10%) | 107Te | ||||||||
112Xe | 54 | 58 | 111.93562(11) | 2.7(8) s | β+ (99.1%) | 112I | 0+ | ||
α (.9%) | 108Te | ||||||||
113Xe | 54 | 59 | 112.93334(9) | 2.74(8) s | β+ (92.98%) | 113I | (5/2+)# | ||
β+, p (7%) | 112Te | ||||||||
α (.011%) | 109Te | ||||||||
β+, α (.007%) | 109Sb | ||||||||
114Xe | 54 | 60 | 113.927980(12) | 10.0(4) s | β+ | 114I | 0+ | ||
115Xe | 54 | 61 | 114.926294(13) | 18(4) s | β+ (99.65%) | 115I | (5/2+) | ||
β+, p (.34%) | 114Te | ||||||||
β+, α (3×10−4%) | 111Sb | ||||||||
116Xe | 54 | 62 | 115.921581(14) | 59(2) s | β+ | 116I | 0+ | ||
117Xe | 54 | 63 | 116.920359(11) | 61(2) s | β+ (99.99%) | 117I | 5/2(+) | ||
β+, p (.0029%) | 116Te | ||||||||
118Xe | 54 | 64 | 117.916179(11) | 3.8(9) min | β+ | 118I | 0+ | ||
119Xe | 54 | 65 | 118.915411(11) | 5.8(3) min | β+ | 119I | 5/2(+) | ||
120Xe | 54 | 66 | 119.911784(13) | 40(1) min | β+ | 120I | 0+ | ||
121Xe | 54 | 67 | 120.911462(12) | 40.1(20) min | β+ | 121I | (5/2+) | ||
122Xe | 54 | 68 | 121.908368(12) | 20.1(1) h | β+ | 122I | 0+ | ||
123Xe | 54 | 69 | 122.908482(10) | 2.08(2) h | EC | 123I | 1/2+ | ||
123mXe | 185.18(22) keV | 5.49(26) µs | 7/2(-) | ||||||
124Xe | 54 | 70 | 123.905893(2) | Observationally Stable[n 3] | 0+ | 9.52(3)×10−4 | |||
125Xe | 54 | 71 | 124.9063955(20) | 16.9(2) h | β+ | 125I | 1/2(+) | ||
125m1Xe | 252.60(14) keV | 56.9(9) s | IT | 125Xe | 9/2(-) | ||||
125m2Xe | 295.86(15) keV | 0.14(3) µs | 7/2(+) | ||||||
126Xe | 54 | 72 | 125.904274(7) | Observationally Stable[n 4] | 0+ | 8.90(2)×10−4 | |||
127Xe | 54 | 73 | 126.905184(4) | 36.345(3) d | EC | 127I | 1/2+ | ||
127mXe | 297.10(8) keV | 69.2(9) s | IT | 127Xe | 9/2- | ||||
128Xe | 54 | 74 | 127.9035313(15) | Stable[n 5] | 0+ | 0.019102(8) | |||
129Xe[n 6] | 54 | 75 | 128.9047794(8) | Stable[n 5] | 1/2+ | 0.264006(82) | |||
129mXe | 236.14(3) keV | 8.88(2) d | IT | 129Xe | 11/2- | ||||
130Xe | 54 | 76 | 129.9035080(8) | Stable[n 5] | 0+ | 0.040710(13) | |||
131Xe[n 7] | 54 | 77 | 130.9050824(10) | Stable[n 5] | 3/2+ | 0.212324(30) | |||
131mXe | 163.930(8) keV | 11.934(21) d | IT | 131Xe | 11/2- | ||||
132Xe[n 7] | 54 | 78 | 131.9041535(10) | Stable[n 5] | 0+ | 0.269086(33) | |||
132mXe | 2752.27(17) keV | 8.39(11) ms | IT | 132Xe | (10+) | ||||
133Xe[n 7][n 8] | 54 | 79 | 132.9059107(26) | 5.2475(5) d | β- | 133Cs | 3/2+ | ||
133mXe | 233.221(18) keV | 2.19(1) d | IT | 133Xe | 11/2- | ||||
134Xe[n 7] | 54 | 80 | 133.9053945(9) | Observationally Stable [n 9] | 0+ | 0.104357(21) | |||
134m1Xe | 1965.5(5) keV | 290(17) ms | IT | 134Xe | 7- | ||||
134m2Xe | 3025.2(15) keV | 5(1) µs | (10+) | ||||||
135Xe[n 10] | 54 | 81 | 134.907227(5) | 9.14(2) h | β- | 135Cs | 3/2+ | ||
135mXe | 526.551(13) keV | 15.29(5) min | IT (99.99%) | 135Xe | 11/2- | ||||
β- (.004%) | 135Cs | ||||||||
136Xe[n 11] | 54 | 82 | 135.907219(8) | 2.38(0.02, 0.14)×1021 yr[4] | β-β- | 136Ba | 0+ | 0.088573(44) | |
136mXe | 1891.703(14) keV | 2.95(9) µs | 6+ | ||||||
137Xe | 54 | 83 | 136.911562(8) | 3.818(13) min | β- | 137Cs | 7/2- | ||
138Xe | 54 | 84 | 137.91395(5) | 14.08(8) min | β- | 138Cs | 0+ | ||
139Xe | 54 | 85 | 138.918793(22) | 39.68(14) s | β- | 139Cs | 3/2- | ||
140Xe | 54 | 86 | 139.92164(7) | 13.60(10) s | β- | 140Cs | 0+ | ||
141Xe | 54 | 87 | 140.92665(10) | 1.73(1) s | β- (99.45%) | 141Cs | 5/2(-#) | ||
β-, n (.043%) | 140Cs | ||||||||
142Xe | 54 | 88 | 141.92971(11) | 1.22(2) s | β- (99.59%) | 142Cs | 0+ | ||
β-, n (.41%) | 141Cs | ||||||||
143Xe | 54 | 89 | 142.93511(21)# | 0.511(6) s | β- | 143Cs | 5/2- | ||
144Xe | 54 | 90 | 143.93851(32)# | 0.388(7) s | β- | 144Cs | 0+ | ||
β-, n | 143Cs | ||||||||
145Xe | 54 | 91 | 144.94407(32)# | 188(4) ms | β- | 145Cs | (3/2-)# | ||
146Xe | 54 | 92 | 145.94775(43)# | 146(6) ms | β- | 146Cs | 0+ | ||
147Xe | 54 | 93 | 146.95356(43)# | 130(80) ms [0.10(+10-5) s] |
β- | 147Cs | 3/2-# | ||
β-, n | 146Cs |
- ↑ Abbreviations:
EC: Electron capture
IT: Isomeric transition - ↑ Bold for stable isotopes
- ↑ Suspected of undergoing β+β+ decay to 124Te with a half-life over 48×1015 years
- ↑ Suspected of undergoing β+β+ decay to 126Te
- ↑ 5.0 5.1 5.2 5.3 5.4 Theoretically capable of spontaneous fission
- ↑ Used in a method of radiodating groundwater and to infer certain events in the Solar System's history
- ↑ 7.0 7.1 7.2 7.3 Fission product
- ↑ Has medical uses
- ↑ Suspected of undergoing β-β- decay to 134Ba with a half-life over 11×1015 years
- ↑ Most powerful known neutron absorber, produced in nuclear power plants as a decay product of 135I, itself a decay product of 135Te, a fission product. Normally absorbs neutrons in the high neutron flux environments to become 136Xe; see iodine pit for more information
- ↑ Primordial radionuclide
Notes
- The isotopic composition refers to that in air.
- Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
- Commercially available materials may have been subjected to an undisclosed or inadvertent isotopic fractionation. Substantial deviations from the given mass and composition can occur.
- Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
- Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC which use expanded uncertainties.
References
- ↑ Status of ββ-decay in Xenon, Roland Lüscher, accessed on line September 17, 2007.
- ↑ Average (Recommended) Half-Life Values for Two-Neutrino Double-Beta Decay, A. S. Barabash, Czechoslovak Journal of Physics 52, #4 (April 2002), pp. 567–573.
- ↑ Rajam, J. B. (1960). Atomic Physics (7th ed.). Delhi: S. Chand and Co. ISBN 81-219-1809-X.
- ↑ 4.0 4.1 Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Kato, R.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakada, T.; Nakamura, K.; Obata, A.; Oki, A.; Ono, Y.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yoshida, H.; Kozlov, A.; Yoshida, S.; Banks, T. I.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K. (2012). "Measurement of the double-β decay half-life of 136Xe with the KamLAND-Zen experiment". Physical Review C 85 (4). arXiv:1201.4664. Bibcode:2012PhRvC..85d5504G. doi:10.1103/PhysRevC.85.045504.
- ↑ Boulos, M.S.; Manuel, O.K. (1971). "The xenon record of extinct radioactivities in the Earth.". Science 174 (4016): 1334–1336. Bibcode:1971Sci...174.1334B. doi:10.1126/science.174.4016.1334. PMID 17801897.
- ↑ Jones, R. L.; Sproule, B. J.; Overton, T. R. (1978). "Measurement of regional ventilation and lung perfusion with Xe-133". Journal of nuclear medicine 19 (10): 1187–1188. PMID 722337.
- ↑ FDA Approved Drugs: Xeneisol
- ↑ Hoshi, H.; Jinnouchi, S.; Watanabe, K.; Onishi, T.; Uwada, O.; Nakano, S.; Kinoshita, K. (1987). "Cerebral blood flow imaging in patients with brain tumor and arterio-venous malformation using Tc-99m hexamethylpropylene-amine oxime--a comparison with Xe-133 and IMP". Kaku igaku. the Japanese journal of nuclear medicine 24 (11): 1617–1623. PMID 3502279.
- ↑ http://www.nucleonica.net/unc.aspx
- Isotope masses from Ame2003 Atomic Mass Evaluation by G. Audi, A.H. Wapstra, C. Thibault, J. Blachot and O. Bersillon in Nuclear Physics A729 (2003).
- Isotopic compositions and standard atomic masses from:
- J. R. de Laeter, J. K. Böhlke, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman and P. D. P. Taylor (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry 75 (6): 683–800. doi:10.1351/pac200375060683.
- M. E. Wieser (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry 78 (11): 2051–2066. doi:10.1351/pac200678112051. Lay summary.
- Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
- G. Audi, A. H. Wapstra, C. Thibault, J. Blachot and O. Bersillon (2003). "The NUBASE evaluation of nuclear and decay properties". Nuclear Physics A 729: 3–128. Bibcode:2003NuPhA.729....3A. doi:10.1016/j.nuclphysa.2003.11.001.
- National Nuclear Data Center. "NuDat 2.1 database". Brookhaven National Laboratory. Retrieved September 2005.
- N. E. Holden (2004). "Table of the Isotopes". In D. R. Lide. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. Section 11. ISBN 978-0-8493-0485-9.
Isotopes of iodine | Isotopes of xenon | Isotopes of caesium |
Table of nuclides |
Isotopes of the chemical elements | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 H |
2 He | ||||||||||||||||
3 Li |
4 Be |
5 B |
6 C |
7 N |
8 O |
9 F |
10 Ne | ||||||||||
11 Na |
12 Mg |
13 Al |
14 Si |
15 P |
16 S |
17 Cl |
18 Ar | ||||||||||
19 K |
20 Ca |
21 Sc |
22 Ti |
23 V |
24 Cr |
25 Mn |
26 Fe |
27 Co |
28 Ni |
29 Cu |
30 Zn |
31 Ga |
32 Ge |
33 As |
34 Se |
35 Br |
36 Kr |
37 Rb |
38 Sr |
39 Y |
40 Zr |
41 Nb |
42 Mo |
43 Tc |
44 Ru |
45 Rh |
46 Pd |
47 Ag |
48 Cd |
49 In |
50 Sn |
51 Sb |
52 Te |
53 I |
54 Xe |
55 Cs |
56 Ba |
* | 72 Hf |
73 Ta |
74 W |
75 Re |
76 Os |
77 Ir |
78 Pt |
79 Au |
80 Hg |
81 Tl |
82 Pb |
83 Bi |
84 Po |
85 At |
86 Rn |
87 Fr |
88 Ra |
** | 104 Rf |
105 Db |
106 Sg |
107 Bh |
108 Hs |
109 Mt |
110 Ds |
111 Rg |
112 Cn |
113 Uut |
114 Fl |
115 Uup |
116 Lv |
117 Uus |
118 Uuo |
* | 57 La |
58 Ce |
59 Pr |
60 Nd |
61 Pm |
62 Sm |
63 Eu |
64 Gd |
65 Tb |
66 Dy |
67 Ho |
68 Er |
69 Tm |
70 Yb |
71 Lu | ||
** | 89 Ac |
90 Th |
91 Pa |
92 U |
93 Np |
94 Pu |
95 Am |
96 Cm |
97 Bk |
98 Cf |
99 Es |
100 Fm |
101 Md |
102 No |
103 Lr | ||
|