Isotopes of gold

From Wikipedia, the free encyclopedia

Gold (Au) has one stable isotope, 197Au, and 36 radioisotopes with 195Au being the most stable with a half-life of 186 days.

Gold is currently considered the heaviest monoisotopic element (Bismuth formerly held that distinction, but Bismuth-209 has been found to be slightly radioactive).

Standard atomic mass: 196.966569(4) u

Radioactive particle tracking

Inside coker units at oil refineries, Gold-198 is used to study the hydrodynamic behavior of solids in fluidized beds and can also be used to quantify the degree of fouling of bed internals.[1]

Nuclear medicine

Gold-198 is a beta emitter with range in tissue of about 11 mm and half life 2.7 days. It is used in some cancer treatments and for treating other diseases.[2][3] Gold-198 nanoparticles are being investigated as an injectable treatment for prostate cancer.[4]

Nuclear weapons

Gold has been proposed as a material for creating a salted nuclear weapon (cobalt is another, better-known salting material). A jacket of natural 197Au, irradiated by the intense high-energy neutron flux from an exploding thermonuclear weapon, would transmute into the radioactive isotope 198Au with a half-life of 2.697 days and produce approximately .411 MeV of gamma radiation, significantly increasing the radioactivity of the weapon's fallout for several days. Such a weapon is not known to have ever been built, tested, or used.[5] Gold has been used in thermonuclear weapons as radiation mirrors within the secondary assembly. Ivy Mike used a thin layer of gold on the secondary casing walls to enhance the blackbody effect, trapping more energy in the foam to enhance the implosion.[6]

The highest amount of 198Au detected in any United States nuclear test was in shot "Sedan" detonated at Nevada Test Site on July 6, 1962.[7]

Table

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life decay
mode(s)[8][n 1]
daughter
isotope(s)[n 2]
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
169Au 79 90 168.99808(32)# 150# µs 1/2+#
170Au 79 91 169.99612(22)# 310(50) µs
[286(+50-40) µs]
(2-)
170mAu 275(14) keV 630(60) µs
[0.62(+6-5) ms]
(9+)
171Au 79 92 170.991879(28) 30(5) µs p 170Pt (1/2+)
α (rare) 167Ir
171mAu 250(16) keV 1.014(19) ms α (54%) 167Ir 11/2-
p (46%) 170Pt
172Au 79 93 171.99004(17)# 4.7(11) ms α (98%) 168Ir high
p (2%) 171Pt
173Au 79 94 172.986237(28) 25(1) ms α 169Ir (1/2+)
β+ (rare) 173Pt
173mAu 214(23) keV 14.0(9) ms α (96%) 169Ir (11/2-)
β+ (4%) 173Pt
174Au 79 95 173.98476(11)# 139(3) ms α 170Ir low
β+ (rare) 174Pt
174mAu 360(70)# keV 171(29) ms high
175Au 79 96 174.98127(5) 100# ms α (82%) 171Ir 1/2+#
β+ (18%) 175Pt
175mAu 200(30)# keV 156(3) ms α 171Ir 11/2-#
β+ 175Pt
176Au 79 97 175.98010(11)# 1.08(17) s
[0.84(+17-14) s]
α (60%) 172Ir (5-)
β+ (40%) 176Pt
176mAu 150(100)# keV 860(160) ms (7+)
177Au 79 98 176.976865(14) 1.462(32) s β+ (60%) 177Pt (1/2+,3/2+)
α (40%) 173Ir
177mAu 216(26) keV 1.180(12) s 11/2-
178Au 79 99 177.97603(6) 2.6(5) s β+ (60%) 178Pt
α (40%) 174Ir
179Au 79 100 178.973213(18) 7.1(3) s β+ (78%) 179Pt 5/2-#
α (22%) 175Ir
179mAu 99(16) keV (11/2-)
180Au 79 101 179.972521(23) 8.1(3) s β+ (98.2%) 180Pt
α (1.8%) 176Ir
181Au 79 102 180.970079(21) 13.7(14) s β+ (97.3%) 181Pt (3/2-)
α (2.7%) 177Ir
182Au 79 103 181.969618(22) 15.5(4) s β+ (99.87%) 182Pt (2+)
α (.13%) 178Ir
183Au 79 104 182.967593(11) 42.8(10) s β+ (99.2%) 183Pt (5/2)-
α (.8%) 179Ir
183m1Au 73.3(4) keV >1 µs (1/2)+
183m2Au 230.6(6) keV <1 µs (11/2)-
184Au 79 105 183.967452(24) 20.6(9) s β+ 184Pt 5+
184mAu 68.46(1) keV 47.6(14) s β+ (70%) 184Pt 2+
IT (30%) 184Au
α (.013%) 180Ir
185Au 79 106 184.965789(28) 4.25(6) min β+ (99.74%) 185Pt 5/2-
α (.26%) 181Ir
185mAu 100(100)# keV 6.8(3) min 1/2+#
186Au 79 107 185.965953(23) 10.7(5) min β+ (99.9992%) 186Pt 3-
α (8×10−4%) 182Ir
186mAu 227.77(7) keV 110(10) ns 2+
187Au 79 108 186.964568(27) 8.4(3) min β+ (99.997%) 187Pt 1/2+
α (.003%) 183Ir
187mAu 120.51(16) keV 2.3(1) s IT 187Au 9/2-
188Au 79 109 187.965324(22) 8.84(6) min β+ 188Pt 1(-)
189Au 79 110 188.963948(22) 28.7(3) min β+ (99.9997%) 189Pt 1/2+
α (3×10−4%) 185Ir
189m1Au 247.23(16) keV 4.59(11) min β+ 189Pt 11/2-
IT (rare) 189Au
189m2Au 325.11(16) keV 190(15) ns 9/2-
189m3Au 2554.7(12) keV 242(10) ns 31/2+
190Au 79 111 189.964700(17) 42.8(10) min β+ 190Pt 1-
α (10−6%) 186Ir
190mAu 200(150)# keV 125(20) ms IT 190Au 11-#
β+ (rare) 190Pt
191Au 79 112 190.96370(4) 3.18(8) h β+ 191Pt 3/2+
191m1Au 266.2(5) keV 920(110) ms IT 191Au (11/2-)
191m2Au 2490(1) keV >400 ns
192Au 79 113 191.964813(17) 4.94(9) h β+ 192Pt 1-
192m1Au 135.41(25) keV 29 ms IT 192Au (5#)+
192m2Au 431.6(5) keV 160(20) ms (11-)
193Au 79 114 192.964150(11) 17.65(15) h β+ (100%) 193Pt 3/2+
α (10−5%) 189Ir
193m1Au 290.19(3) keV 3.9(3) s IT (99.97%) 193Au 11/2-
β+ (.03%) 193Pt
193m2Au 2486.5(6) keV 150(50) ns (31/2+)
194Au 79 115 193.965365(11) 38.02(10) h β+ 194Pt 1-
194m1Au 107.4(5) keV 600(8) ms IT 194Au (5+)
194m2Au 475.8(6) keV 420(10) ms (11-)
195Au 79 116 194.9650346(14) 186.098(47) d EC 195Pt 3/2+
195mAu 318.58(4) keV 30.5(2) s IT 195Au 11/2-
196Au 79 117 195.966570(3) 6.1669(6) d β+ (93.05%) 196Pt 2-
β- (6.95%) 196Hg
196m1Au 84.660(20) keV 8.1(2) s IT 196Au 5+
196m2Au 595.66(4) keV 9.6(1) h 12-
197Au[n 3] 79 118 196.9665687(6) Observationally Stable[n 4] 3/2+ 1.0000
197mAu 409.15(8) keV 7.73(6) s IT 197Au 11/2-
198Au 79 119 197.9682423(6) 2.69517(21) d β- 198Hg 2-
198m1Au 312.2200(20) keV 124(4) ns 5+
198m2Au 811.7(15) keV 2.27(2) d IT 198Au (12-)
199Au 79 120 198.9687652(6) 3.139(7) d β- 199Hg 3/2+
199mAu 548.9368(21) keV 440(30) µs (11/2)-
200Au 79 121 199.97073(5) 48.4(3) min β- 200Hg 1(-)
200mAu 970(70) keV 18.7(5) h β- (82%) 200Hg 12-
IT (18%) 200Au
201Au 79 122 200.971657(3) 26(1) min β- 201Hg 3/2+
202Au 79 123 201.97381(18) 28.8(19) s β- 202Hg (1-)
203Au 79 124 202.975155(3) 53(2) s β- 203Hg 3/2+
204Au 79 125 203.97772(22)# 39.8(9) s β- 204Hg (2-)
205Au 79 126 204.97987(32)# 31(2) s β- 205Hg 3/2+
  1. Abbreviations:
    EC: Electron capture
    IT: Isomeric transition
  2. Bold for stable isotopes, bold italics for nearly-stable isotopes (half-life longer than the age of the universe)
  3. Potential material for salted bombs
  4. Believed to undergo α decay to 193Ir

Notes

  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC which use expanded uncertainties.

References

  1. Sanchez, Francisco; Granovskiy (2012). "Application of radioactive particle tracking to indicate shed fouling in the stripper section of a fluid coker". Canadian Journal of Chemical Engineering. doi:10.1002/cjce.21740. 
  2. "Nanoscience and Nanotechnology in Nanomedicine: Hybrid Nanoparticles In Imaging and Therapy of Prostate Cancer". Radiopharmaceutical Sciences Institute, University of Missouri-Columbia. 
  3. Hainfeld, James F.; Dilmanian, F. Avraham; Slatkin, Daniel N.; Smilowitz, Henry M. (2008). "Radiotherapy enhancement with gold nanoparticles". Journal of Pharmacy and Pharmacology 60 (8): 977–85. doi:10.1211/jpp.60.8.0005. PMID 18644191. 
  4. "Green Tea and Gold Nanoparticles Destroy Prostate Tumors". 2012. 
  5. D. T. Win, M. Al Masum (2003). "Weapons of Mass Destruction". Assumption University Journal of Technology 6 (4): 199219. 
  6. Rhodes, Richard (1995). Dark sun: The making of the hydrogen bomb. New York: Simon & Schuster. ISBN 0-684-80400-X. 
  7. R. L. Miller (2002). U.S. Atlas of Nuclear Fallout, 1951-1970 1 (Abridged General Reader ed.). Two Sixty Press. p. 340. ISBN 1-881043-13-4. 
  8. http://www.nucleonica.net/unc.aspx
Isotopes of platinum Isotopes of gold Isotopes of mercury
Table of nuclides
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.