Intelligence
Intelligence has been defined in many different ways including logic, abstract thought, understanding, self-awareness, communication, learning, having emotional knowledge, retaining, planning, and problem solving.
Intelligence is most widely studied in humans, but has also been observed in animals and in plants. Artificial intelligence is the simulation of intelligence in machines.
Within the discipline of psychology, various approaches to human intelligence have been adopted. The psychometric approach is especially familiar to the general public, as well as being the most researched and by far the most widely used in practical settings.[1]
History of the term
Intelligence derives from the Latin verb intelligere, to comprehend or perceive. A form of this verb, intellectus, became the medieval technical term for understanding, and a translation for the Greek philosophical term nous. This term was however strongly linked to the metaphysical and cosmological theories of teleological scholasticism, including theories of the immortality of the soul, and the concept of the Active Intellect (also known as the Active Intelligence). This entire approach to the study of nature was strongly rejected by the early modern philosophers such as Francis Bacon, Thomas Hobbes, John Locke, and David Hume, all of whom preferred the word "understanding" in their English philosophical works.[2][3] Hobbes for example, in his Latin De Corpore, used "intellectus intelligit" (translated in the English version as "the understanding understandeth") as a typical example of a logical absurdity.[4] The term "intelligence" has therefore become less common in English language philosophy, but it has later been taken up (with the scholastic theories which it now implies) in more contemporary psychology.
Definitions
The definition of intelligence is controversial. Some groups of psychologists have suggested the following definitions:
- From "Mainstream Science on Intelligence" (1994), an editorial statement by fifty-two researchers:
A very general mental capability that, among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly and learn from experience. It is not merely book learning, a narrow academic skill, or test-taking smarts. Rather, it reflects a broader and deeper capability for comprehending our surroundings—"catching on," "making sense" of things, or "figuring out" what to do.[5]
- From "Intelligence: Knowns and Unknowns" (1995), a report published by the Board of Scientific Affairs of the American Psychological Association:
Individuals differ from one another in their ability to understand complex ideas, to adapt effectively to the environment, to learn from experience, to engage in various forms of reasoning, to overcome obstacles by taking thought. Although these individual differences can be substantial, they are never entirely consistent: a given person's intellectual performance will vary on different occasions, in different domains, as judged by different criteria. Concepts of "intelligence" are attempts to clarify and organize this complex set of phenomena. Although considerable clarity has been achieved in some areas, no such conceptualization has yet answered all the important questions, and none commands universal assent. Indeed, when two dozen prominent theorists were recently asked to define intelligence, they gave two dozen, somewhat different, definitions.[6][7]
Besides those definitions, psychology and learning researchers also have suggested definitions of intelligence such as:
Researcher | Quotation |
---|---|
Alfred Binet | Judgment, otherwise called "good sense," "practical sense," "initiative," the faculty of adapting one's self to circumstances ... auto-critique.[8] |
David Wechsler | The aggregate or global capacity of the individual to act purposefully, to think rationally, and to deal effectively with his environment.[9] |
Lloyd Humphreys | "...the resultant of the process of acquiring, storing in memory, retrieving, combining, comparing, and using in new contexts information and conceptual skills."[10] |
Cyril Burt | Innate general cognitive ability[11] |
Howard Gardner | To my mind, a human intellectual competence must entail a set of skills of problem solving — enabling the individual to resolve genuine problems or difficulties that he or she encounters and, when appropriate, to create an effective product — and must also entail the potential for finding or creating problems — and thereby laying the groundwork for the acquisition of new knowledge.[12] |
Linda Gottfredson | The ability to deal with cognitive complexity.[13] |
Sternberg & Salter | Goal-directed adaptive behavior.[14] |
Reuven Feuerstein | The theory of Structural Cognitive Modifiability describes intelligence as "the unique propensity of human beings to change or modify the structure of their cognitive functioning to adapt to the changing demands of a life situation."[15] |
What is considered intelligent varies with culture. For example, when asked to sort, the Kpelle people take a functional approach. A Kpelle participant stated "the knife goes with the orange because it cuts it." When asked how a fool would sort, they sorted linguistically, putting the knife with other implements and the orange with other foods, which is the style considered intelligent in other cultures.[16]
Human intelligence
Human intelligence is the intellectual capacity of humans, which is characterized by perception, consciousness, self-awareness, and volition. Through their intelligence humans possess the cognitive abilities to learn, form concepts, understand, and reason, including the capacities to recognize patterns, comprehend ideas, plan, problem solve, and use language to communicate. Intelligence enables humans to experience and think.
Animal and plant intelligence
Although humans have been the primary focus of intelligence researchers, scientists have also attempted to investigate animal intelligence, or more broadly, animal cognition. These researchers are interested in studying both mental ability in a particular species, and comparing abilities between species. They study various measures of problem solving, as well as mathematical and language abilities. Some challenges in this area are defining intelligence so that it means the same thing across species (e.g. comparing intelligence between literate humans and illiterate animals), and then operationalizing a measure that accurately compares mental ability across different species and contexts.
Wolfgang Köhler's pioneering research on the intelligence of apes is a classic example of research in this area. Stanley Coren's book, The Intelligence of Dogs is a notable popular book on the topic.[17] (See also: Dog intelligence.) Nonhuman animals particularly noted and studied for their intelligence include chimpanzees, bonobos (notably the language-using Kanzi) and other great apes, dolphins, elephants and to some extent parrots, rats and ravens.
Cephalopod intelligence also provides important comparative study. Cephalopods appear to exhibit characteristics of significant intelligence, yet their nervous systems differ radically from those of backboned animals. Vertebrates such as mammals, birds, reptiles and fish have shown a fairly high degree of intellect that varies according to each species. The same is true with arthropods.
It has been argued that plants should also be classified as being in some sense intelligent based on their ability to sense the environment and adjust their morphology, physiology and phenotype accordingly.[18][19]
Artificial intelligence
Artificial intelligence (or AI) is both the intelligence of machines and the branch of computer science which aims to create it, through "the study and design of intelligent agents"[20] or "rational agents", where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[21] Achievements in artificial intelligence include constrained and well-defined problems such as games, crossword-solving and optical character recognition and a few more general problems such as autonomous cars.[22] General intelligence or strong AI has not yet been achieved and is a long-term goal of AI research.
Among the traits that researchers hope machines will exhibit are reasoning, knowledge, planning, learning, communication, perception, and the ability to move and manipulate objects.[20][21] In the field of artificial intelligence there is no consensus on how closely the brain should be simulated.
See also
- Active intellect
- Cognitive epidemiology
- Downing effect
- Educational psychology
- Environment and intelligence
- Fertility and intelligence
- Flynn effect
- Health and intelligence
- Height and intelligence
- Heritability of IQ
- History of the race and intelligence controversy
- Individual differences psychology
- Intellectual giftedness
- Intelligence (journal)
- Knowledge
- Malleable intelligence
- Nations and intelligence
- Neuroscience and intelligence
- Passive intellect
- Race and intelligence
- Religiosity and intelligence
- Sex and psychology
- Theory of multiple intelligences
- Job Performance
- Typical Versus Maximum Performance
References
- ↑ Neisser, U.; Boodoo, G.; Bouchard, T. J. , J.; Boykin, A. W.; Brody, N.; Ceci, S. J.; Halpern, D. F.; Loehlin, J. C.; Perloff, R.; Sternberg, R. J.; Urbina, S. (1996). "Intelligence: Knowns and unknowns". American Psychologist 51 (2): 77. doi:10.1037/0003-066X.51.2.77. Article in Wikipedia: Intelligence: Knowns and Unknowns
- ↑ Martinich, Aloysius (1995). A Hobbes Dictionary. Blackwell. p. 305
- ↑ Nidditch, Peter. "Foreword". An Essay Concerning Human Understanding. Oxford University Press. p. xxii
- ↑ English, and Latin version.
- ↑ Gottfredson, Linda S. (1997). "Mainstream Science on Intelligence (editorial)". Intelligence 24: 13–23. ISSN 0160-2896.
- ↑ Neisser, U.; Boodoo, G.; Bouchard Jr, T.J.; Boykin, A.W.; Brody, N.; Ceci, S.J.; Halpern, D.F.; Loehlin, J.C.; Perloff, R.; Sternberg, R.J.; Others, (1998). "Intelligence: Knowns and Unknowns". Annual Progress in Child Psychiatry and Child Development 1997. ISBN 978-0-87630-870-7. Retrieved 2008-03-18.
- ↑ Neisser, Ulrich; Boodoo, Gwyneth; Bouchard, Thomas J.; Boykin, A. Wade; Brody, Nathan; Ceci, Stephen J.; Halpern, Diane F.; Loehlin, John C.; Perloff, Robert; Sternberg, Robert J.; Urbina, Susana (1996). "Intelligence: Knowns and unknowns". American Psychologist 51: 77–101. ISSN 0003-066X. Retrieved 22 July 2013.
- ↑ Binet, Alfred (1916) [1905]. "New methods for the diagnosis of the intellectual level of subnormals". The development of intelligence in children: The Binet-Simon Scale. E.S. Kite (Trans.). Baltimore: Williams & Wilkins. pp. 37–90. Retrieved 10 July 2010. "originally published as Méthodes nouvelles pour le diagnostic du niveau intellectuel des anormaux. L'Année Psychologique, 11, 191-244"
- ↑ Wechsler, D (1944). The measurement of adult intelligence. Baltimore: Williams & Wilkins. ISBN 0-19-502296-3. OCLC 219871557 5950992. ASIN = B000UG9J7E
- ↑ Humphreys, L. G. (1979). "The construct of general intelligence". Intelligence 3 (2): 105–120. doi:10.1016/0160-2896(79)90009-6.
- ↑ Burt, C. (1931). "The Differentiation Of Intellectual Ability". The British Journal of Educational Psychology.
- ↑ Frames of mind: The theory of multiple intelligences. New York: Basic Books. 1993. ISBN 0-465-02510-2. OCLC 221932479 27749478 32820474 56327755 9732290.
- ↑ Gottfredson, L. (1998). "The General Intelligence Factor" (pdf). Scientific American Presents 9 (4): 24–29. Retrieved 2008-03-18.
- ↑ Sternberg RJ; Salter W (1982). Handbook of human intelligence. Cambridge, UK: Cambridge University Press. ISBN 0-521-29687-0. OCLC 11226466 38083152 8170650.
- ↑ Feuerstein, R., Feuerstein, S., Falik, L & Rand, Y. (1979; 2002). Dynamic assessments of cognitive modifiability. ICELP Press, Jerusalem: Israel; Feuerstein, R. (1990). The theory of structural modifiability. In B. Presseisen (Ed.), Learning and thinking styles: Classroom interaction. Washington, DC: National Education Associations
- ↑ Glick (1975) reported in Resnick, L. (1976). The Nature of Intelligence. Hillsdale, New Jersey: Lawrence Erlbaum Associates.
- ↑ Coren, Stanley (1995). The Intelligence of Dogs. Bantam Books. ISBN 0-553-37452-4. OCLC 30700778.
- ↑ Trewavas, Anthony (September 2005). "Green plants as intelligent organisms". Trends in Plant Science 10 (9): 413–419. doi:10.1016/j.tplants.2005.07.005. PMID 16054860.
- ↑ Trewavas, A. (2002). "Mindless mastery". Nature 415 (6874): 841. doi:10.1038/415841a. PMID 11859344.
- ↑ 20.0 20.1 Goebel, Randy; Poole, David L.; Mackworth, Alan K. (1997). Computational intelligence: A logical approach (pdf). Oxford [Oxfordshire]: Oxford University Press. p. 1. ISBN 0-19-510270-3.
- ↑ 21.0 21.1 Canny, John; Russell, Stuart J.; Norvig, Peter (2003). Artificial intelligence: A modern approach. Englewood Cliffs, N.J.: Prentice Hall. ISBN 0-13-790395-2. OCLC 51325314 60211434 61259102.
- ↑ http://www.technologyreview.com/news/520746/data-shows-googles-robot-cars-are-smoother-safer-drivers-than-you-or-i/
Further reading
- Binet, Alfred; Simon, Th. (1916). The development of intelligence in children: The Binet-Simon Scale. Publications of the Training School at Vineland New Jersey Department of Research No. 11. E.S. Kite (Trans.). Baltimore: Williams & Wilkins. Retrieved 18 July 2010.
- Terman, Lewis Madison; Merrill, Maude A. (1937). Measuring intelligence: A guide to the administration of the new revised Stanford-Binet tests of intelligence. Riverside textbooks in education. Boston (MA): Houghton Mifflin.
- Richardson, Ken (2000). The Making of Intelligence. New York (NY): Columbia University Press. ISBN 978-0-231-12005-0. Lay summary (28 June 2010).
- Bock, Gregory; Goode, Jamie; Webb, Kate, eds. (2000). The Nature of Intelligence. Novartis Foundation Symposium 233. Chichester: Wiley. doi:10.1002/0470870850. ISBN 978-0-471-49434-8. Retrieved 16 July 2010.
- Blakeslee, Sandra; Hawkins, Jeff (2004). On intelligence. New York: Times Books. ISBN 0-8050-7456-2. OCLC 55510125.
- Sternberg, Robert J., ed. (2004). International Handbook of Intelligence. Cambridge: Cambridge University Press. ISBN 978-0-521-00402-2. Lay summary (29 June 2010).
|coauthors=
requires|author=
(help) - Stanovich, Keith (2009). What Intelligence Tests Miss: The Psychology of Rational Thought. New Haven (CT): Yale University Press. ISBN 978-0-300-12385-2. Lay summary (9 August 2010).
- Flynn, James R. (2009). What Is Intelligence: Beyond the Flynn Effect (expanded paperback ed.). Cambridge: Cambridge University Press. ISBN 978-0-521-74147-7. Lay summary (18 July 2010).
- Mackintosh, N. J. (2011). IQ and Human Intelligence (second ed.). Oxford: Oxford University Press. ISBN 978-0-19-958559-5. Lay summary (9 February 2012).
- Sternberg, Robert J.; Kaufman, Scott Barry, eds. (2011). The Cambridge Handbook of Intelligence. Cambridge: Cambridge University Press. ISBN 9780521739115. Lay summary (22 July 2013).
|coauthors=
requires|author=
(help)
External links
Wikimedia Commons has media related to Intelligence. |
Look up intelligence in Wiktionary, the free dictionary. |
Wikiquote has a collection of quotations related to: Intelligence |
- Intelligence on In Our Time at the BBC. (listen now)
- APA Task Force Examines the Knowns and Unknowns of Intelligence - American Psychologist, February 1996
- The cognitive-psychology approach vs. psychometric approach to intelligence - American Scientist magazine
- History of Influences in the Development of Intelligence Theory and Testing - Developed by Jonathan Plucker at Indiana University
- The Limits of Intelligence: The laws of physics may well prevent the human brain from evolving into an ever more powerful thinking machine by Douglas Fox in Scientific American, June 14, 2011.
- A Collection of Definitions of Intelligence
Scholarly journals and societies