Inequality (mathematics)

From Wikipedia, the free encyclopedia
Not to be confused with Inequation. "Less than", "Greater than", and "More than" redirect here. For the use of the "<" and ">" signs as punctuation, see Bracket. For the UK insurance brand "More Th>n", see RSA Insurance Group.

In mathematics, an inequality is a relation that holds between two values when they are different (see also: equality).

  • The notation ab means that a is not equal to b.

It does not say that one is greater than the other, or even that they can be compared in size.

If the values in question are elements of an ordered set, such as the integers or the real numbers, they can be compared in size.

  • The notation a < b means that a is less than b.
  • The notation a > b means that a is greater than b.

In either case, a is not equal to b. These relations are known as strict inequalities. The notation a < b may also be read as "a is strictly less than b".

In contrast to strict inequalities, there are two types of inequality relations that are not strict:

  • The notation ab means that a is less than or equal to b (or, equivalently, not greater than b, or at most b).
  • The notation ab means that a is greater than or equal to b (or, equivalently, not less than b, or at least b)

An additional use of the notation is to show that one quantity is much greater than another, normally by several orders of magnitude.

  • The notation a b means that a is much less than b. (In measure theory, however, this notation is used for absolute continuity, an unrelated concept.)
  • The notation a b means that a is much greater than b.

Properties

Inequalities are governed by the following properties. All of these properties also hold if all of the non-strict inequalities (≤ and ≥) are replaced by their corresponding strict equalities (< and >) and (in the case of applying a function) monotonic functions are limited to strictly monotonic functions.

Transitivity

The Transitive property of inequality states:

  • For any real numbers a, b, c:
    • If ab and bc, then ac.
    • If ab and bc, then ac.
  • If either of the premises is a strict inequality, then the conclusion is a strict inequality.
    • E.g. if ab and b > c, then a > c
  • An equality is of course a special case of a non-strict inequality.
    • E.g. if a = b and b > c, then a > c

Converse

The relations ≤ and ≥ are each other's converse:

  • For any real numbers a and b:
    • If ab, then ba.
    • If ab, then ba.

Addition and subtraction

A common constant c may be added to or subtracted from both sides of an inequality:

  • For any real numbers a, b, c
    • If ab, then a + cb + c and acbc.
    • If ab, then a + cb + c and acbc.

i.e., the real numbers are an ordered group under addition.

Multiplication and division

The properties that deal with multiplication and division state:

  • For any real numbers, a, b and non-zero c:
    • If c is positive, then multiplying or dividing by c does not change the inequality:
      • If ab and c > 0, then acbc and a/cb/c.
      • If ab and c > 0, then acbc and a/cb/c.
    • If c is negative, then multiplying or dividing by c inverts the inequality:
      • If ab and c < 0, then acbc and a/cb/c.
      • If ab and c < 0, then acbc and a/cb/c.

More generally, this applies for an ordered field, see below.

Additive inverse

The properties for the additive inverse state:

  • For any real numbers a and b, negation inverts the inequality:
    • If ab, then −a ≥ −b.
    • If ab, then −a ≤ −b.

Multiplicative inverse

The properties for the multiplicative inverse state:

  • For any non-zero real numbers a and b that are both positive or both negative:
    • If ab, then 1/a ≥ 1/b.
    • If ab, then 1/a ≤ 1/b.
  • If one of a and b is positive and the other is negative, then:
    • If a < b, then 1/a < 1/b.
    • If a > b, then 1/a > 1/b.

These can also be written in chained notation as:

  • For any non-zero real numbers a and b:
    • If 0 < ab, then 1/a ≥ 1/b > 0.
    • If ab < 0, then 0 > 1/a ≥ 1/b.
    • If a < 0 < b, then 1/a < 0 < 1/b.
    • If 0 > ab, then 1/a ≤ 1/b < 0.
    • If ab > 0, then 0 < 1/a ≤ 1/b.
    • If a > 0 > b, then 1/a > 0 > 1/b.

Applying a function to both sides

The graph of y = ln x

Any monotonically increasing function may be applied to both sides of an inequality (provided they are in the domain of that function) and it will still hold. Applying a monotonically decreasing function to both sides of an inequality means the opposite inequality now holds. The rules for additive and multiplicative inverses are both examples of applying a monotonically decreasing function.

If the inequality is strict (a < b, a > b) and the function is strictly monotonic, then the inequality remains strict. If only one of these conditions is strict, then the resultant inequality is non-strict. The rules for additive and multiplicative inverses are both examples of applying a strictly monotonically decreasing function.

As an example, consider the application of the natural logarithm to both sides of an inequality when a and b are positive real numbers:

a\leq b\Leftrightarrow \ln(a)\leq \ln(b).
a<b\Leftrightarrow \ln(a)<\ln(b).

This is true because the natural logarithm is a strictly increasing function.

Ordered fields

If (F, +, ×) is a field and ≤ is a total order on F, then (F, +, ×, ≤) is called an ordered field if and only if:

  • ab implies a + cb + c;
  • 0 ≤ a and 0 ≤ b implies 0 ≤ a × b.

Note that both (Q, +, ×, ≤) and (R, +, ×, ≤) are ordered fields, but ≤ cannot be defined in order to make (C, +, ×, ≤) an ordered field, because 1 is the square of i and would therefore be positive.

The non-strict inequalities ≤ and ≥ on real numbers are total orders. The strict inequalities < and > on real numbers are strict total orders.

Chained notation

The notation a < b < c stands for "a < b and b < c", from which, by the transitivity property above, it also follows that a < c. Obviously, by the above laws, one can add/subtract the same number to all three terms, or multiply/divide all three terms by same nonzero number and reverse all inequalities according to sign. Hence, for example, a < b + e < c is equivalent to ae < b < ce.

This notation can be generalized to any number of terms: for instance, a1a2 ≤ ... ≤ an means that aiai+1 for i = 1, 2, ..., n  1. By transitivity, this condition is equivalent to aiaj for any 1 ≤ ijn.

When solving inequalities using chained notation, it is possible and sometimes necessary to evaluate the terms independently. For instance to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1/2 and x1 respectively, which can be combined into the final solution 1 ≤ x < 1/2.

Occasionally, chained notation is used with inequalities in different directions, in which case the meaning is the logical conjunction of the inequalities between adjacent terms. For instance, a < b = cd means that a < b, b = c, and cd. This notation exists in a few programming languages such as Python.


Inequalities between means

There are many inequalities between means. For example, for any positive numbers a1, a2, …, an we have H G A Q, where

H={\frac  {n}{1/a_{1}+1/a_{2}+\cdots +1/a_{n}}} (harmonic mean),
G={\sqrt[ {n}]{a_{1}\cdot a_{2}\cdots a_{n}}} (geometric mean),
A={\frac  {a_{1}+a_{2}+\cdots +a_{n}}{n}} (arithmetic mean),
Q={\sqrt  {{\frac  {a_{1}^{2}+a_{2}^{2}+\cdots +a_{n}^{2}}{n}}}} (quadratic mean).

Power inequalities

A "Power inequality" is an inequality containing ab terms, where a and b are real positive numbers or variable expressions. They often appear in mathematical olympiads exercises.

Examples

  • For any real x,
e^{x}\geq 1+x.\,
  • If x > 0, then
x^{x}\geq \left({\frac  {1}{e}}\right)^{{1/e}}.\,
  • If x ≥ 1, then
x^{{x^{x}}}\geq x.\,
  • If x, y, z > 0, then
(x+y)^{z}+(x+z)^{y}+(y+z)^{x}>2.\,
  • For any real distinct numbers a and b,
{\frac  {e^{b}-e^{a}}{b-a}}>e^{{(a+b)/2}}.
  • If x, y > 0 and 0 < p < 1, then
(x+y)^{p}<x^{p}+y^{p}.\,
  • If x, y, z > 0, then
x^{x}y^{y}z^{z}\geq (xyz)^{{(x+y+z)/3}}.\,
  • If a, b > 0, then
a^{a}+b^{b}\geq a^{b}+b^{a}.\,
This inequality was solved by I.Ilani in JSTOR,AMM,Vol.97,No.1,1990.
  • If a, b > 0, then
a^{{ea}}+b^{{eb}}\geq a^{{eb}}+b^{{ea}}.\,
This inequality was solved by S.Manyama in AJMAA,Vol.7,Issue 2,No.1,2010 and by V.Cirtoaje in JNSA,Vol.4,Issue 2,130-137,2011.
  • If a, b, c > 0, then
a^{{2a}}+b^{{2b}}+c^{{2c}}\geq a^{{2b}}+b^{{2c}}+c^{{2a}}.\,
  • If a, b > 0, then
a^{b}+b^{a}>1.\,
This result was generalized by R. Ozols in 2002 who proved that if a1, ..., an > 0, then
a_{1}^{{a_{2}}}+a_{2}^{{a_{3}}}+\cdots +a_{n}^{{a_{1}}}>1
(result is published in Latvian popular-scientific quarterly The Starry Sky, see references).

Well-known inequalities

Mathematicians often use inequalities to bound quantities for which exact formulas cannot be computed easily. Some inequalities are used so often that they have names:

Complex numbers and inequalities

The set of complex numbers {\mathbb  {C}} with its operations of addition and multiplication is a field, but it is impossible to define any relation ≤ so that ({\mathbb  {C}},+,\times ,\leq ) becomes an ordered field. To make ({\mathbb  {C}},+,\times ,\leq ) an ordered field, it would have to satisfy the following two properties:

  • if ab then a + cb + c
  • if 0 ≤ a and 0 ≤ b then 0 ≤ a b

Because ≤ is a total order, for any number a, either 0 ≤ a or a ≤ 0 (in which case the first property above implies that 0 ≤ -a). In either case 0 ≤ a2; this means that i^{2}>0 and 1^{2}>0; so -1>0 and 1>0, which means (-1+1)>0; contradiction.

However, an operation ≤ can be defined so as to satisfy only the first property (namely, "if ab then a + cb + c"). Sometimes the lexicographical order definition is used:

  • a ≤ b if Re(a) < Re(b) or (Re(a)=Re(b) and Im(a)Im(b))

It can easily be proven that for this definition ab implies a + cb + c.

Vector inequalities

Inequality relationships similar to those defined above can also be defined for column vector. If we let the vectors x,y\in {\mathbb  {R}}^{n} (meaning that x=\left(x_{1},x_{2},\ldots ,x_{n}\right)^{{\mathsf  {T}}} and y=\left(y_{1},y_{2},\ldots ,y_{n}\right)^{{\mathsf  {T}}} where x_{i} and y_{i} are real numbers for i=1,\ldots ,n), we can define the following relationships.

  • x=y\ if x_{i}=y_{i}\ for i=1,\ldots ,n
  • x<y\ if x_{i}<y_{i}\ for i=1,\ldots ,n
  • x\leq y if x_{i}\leq y_{i} for i=1,\ldots ,n and x\neq y
  • x\leqq y if x_{i}\leq y_{i} for i=1,\ldots ,n

Similarly, we can define relationships for x>y, x\geq y, and x\geqq y. We note that this notation is consistent with that used by Matthias Ehrgott in Multicriteria Optimization (see References).

The property of Trichotomy (as stated above) is not valid for vector relationships. For example, when x=\left[2,5\right]^{{\mathsf  {T}}} and y=\left[3,4\right]^{{\mathsf  {T}}}, there exists no valid inequality relationship between these two vectors. Also, a multiplicative inverse would need to be defined on a vector before this property could be considered. However, for the rest of the aforementioned properties, a parallel property for vector inequalities exists.

See also

References

    External links

    This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.