Ian Sneddon

From Wikipedia, the free encyclopedia

Ian Naismith Sneddon FRS[1] (8 Dec 1919 Glasgow, Scotland – 4 Nov 2000 Glasgow, Scotland) was a Scottish mathematician who worked on analysis and applied mathematics.[2]

Books

  • with Nevill Mott: Wave mechanics and its applications, 1948
  • Fourier transforms, 1951[3]
  • Special functions of mathematical physics and chemistry, 1956[4]
  • Elements of partial differential equations, 1957[5]
  • with James George Defares: An introduction to the mathematics of medicine and biology, 1960[6]
  • Mixed boundary problems in potential theory, 1966
  • Lectures on transform methods, 1967
  • with Morton Lowengrub: Crack problems in the classical theory of elasticity, 1969
  • The use of integral transforms, 1972
  • The linear theory of thermoelasticity, 1974
  • Encyclopaedic dictionary of mathematics for engineers and applied scientists, 1976
  • The use of operators of fractional integration in applied mathematics, 1979
  • with E. L. Ince: The solution of ordinary differential equations, 1987

References

  1. Chadwick, P. (2002). "Ian Naismith Sneddon, O.B.E. 8 December 1919 - 4 November 2000". Biographical Memoirs of Fellows of the Royal Society 48: 417. doi:10.1098/rsbm.2002.0025. 
  2. McBride, Adam (15 Jan 2001). "Death of I. N. Sneddon". OP-SF NET. 
  3. Heins, Albert E. (1952). "Review: I. Sneddon, Fourier transforms". Bull. Amer. Math. Soc. 58 (4): 512–513. 
  4. Cohen, E. Richard (1956). "Review: Special functions of mathematical physics and chemistry". Physics Today 9 (11): 46. doi:10.1063/1.3059825. 
  5. Polkinghorne, J. C. (1957). "Review: Elements of partial differential equations". Physics Today 10 (5): 36. doi:10.1063/1.3060371. 
  6. Jones, D. S. (1961). "Review: An introduction to the mathematics of medicine and biology". Proc. Edinburgh Math. Soc. 12 (3): 166–167. doi:10.1017/S0013091500002911. 

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.