Hua's lemma

From Wikipedia, the free encyclopedia

In mathematics, Hua's lemma,[1] named for Hua Loo-keng, is an estimate for exponential sums.

It states that if P is an integral-valued polynomial of degree k, \varepsilon is a positive real number, and f a real function defined by

f(\alpha )=\sum _{{x=1}}^{N}\exp(2\pi iP(x)\alpha ),

then

\int _{0}^{1}|f(\alpha )|^{\lambda }d\alpha \ll _{{P,\varepsilon }}N^{{\mu (\lambda )}},

where (\lambda ,\mu (\lambda )) lies on a polygonal line with vertices

(2^{\nu },2^{\nu }-\nu +\varepsilon ),\quad \nu =1,\ldots ,k.

References

  1. Hua, Loo-keng (1938). "On Waring's problem". Quarterly Journal of Mathematics 9 (1): 199–202. doi:10.1093/qmath/os-9.1.199. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.