Housekeeping gene

From Wikipedia, the free encyclopedia

In molecular biology, Housekeeping genes are typically constitutive genes that are required for the maintenance of basic cellular function, and are expressed in all cells of an organism under normal and patho-physiological conditions.[1][2] Although some housekeeping genes (such as GAPDH, HSP90, and β-actin) are expressed at relatively constant levels in most non-pathological situations, other housekeeping genes may vary depending on experimental conditions.[3]

In a study involving cardiac stem cells, ACTB and GAPDH were found to be the most consistent, while β2M, HPRT1, and RPLP1 varied significantly between neonatal and adult cardiac cells.[4] The origin of the term "housekeeping gene" remains obscure. Literature from 1976 used the term to describe specifically tRNA and rRNA.[5] Interpreting gene expression data can be problematic, with most human genes registering 5-10 copies per cell (possibly representing error). Housekeeping genes are expressed in at least 25 copies per cell and sometimes number in the thousands.

Common housekeeping genes in human

Gene Expression

Transcription Factors

Sterol Regulatory Element Binding Protein
Repressors

RNA Splicing

Small nuclear ribonucleoprotein-associated proteins B and B'

Translation Factors

tRNA Synthetases
RNA Binding Protein

Ribosomal Proteins

RNA Polymerase

Protein Processing

Heat Shock Proteins

Histone

Cell Cycle

Apoptosis

Oncogenes

DNA Repair/Replication

Metabolism

  • PRKAG1[1] Senses energy level and inactivates HMGCoA reductase and Acetyl CoA Carboxylase

Carbohydrate Metabolism

Citric Acid Cycle

  • SDHA[1] Succinate Dehydrogenase subunit A
  • MDH1[1][6] Malate dehydrogenase

Lipid Metabolism

  • GM2A[1] not highly expressed constitutively
  • HADHA[1] Trifunctional protein subunit alpha
  • HADHB[1][6] Trifunctional protein subunit beta

Amino Acid Metabolism

  • COMT[1] Catechol-O-methyl transferase
  • GGTLA1[1] Gamma glutamyl transferase-like 1
  • PHGDH[1][6] Phosphoglycerate dehydrogenase (first and rate-limiting step of serine biosynthesis)
  • ODC1[1]
  • TPMT[1]

Nucleotide Synthesis

NADH Dehydrogenase

Cytochrome C Oxidase

(Note that COX1, COX2, and COX3 are mitochondrially encoded)

ATPase

Mitochondrial
Lysosomal

Lysosome

Proteosome

Ribonuclease

  • RNH[1][6] Ribonuclease inhibitor

Oxidase/Reductase

Structural

Cytoskeletal

Organelle Synthesis

A specialized form of cell signaling

Mitochondrion

Surface

Cell Adhesion

Channels and Transporters

Receptors

  • ACVRL1[1] TGF Beta receptor family Rendu-Osler-Weber syndrome
  • CD23A[1] FCER2 low affinity IgE receptor (lectin)
  • GRM4[1] Metabotropic glutamate receptor
  • JAG1[1] NOTCH2 Receptor associated with Alagille syndrome
  • MC2R[1] Melanocortin receptor type 2 (similar to ACTH receptor)
  • SSTR5[1] Somatostatin receptor tends to inhibit other hormones

HLA/Immunoglobulin/Cell recognition

Kinases/Signalling

Growth Factors

Tissue Necrosis Factor

  • CD40[1] formerly TNFRSF5

Casein Kinase

Miscellaneous

  • ALAS1 Aminolevulinic Acid Synthase type 1 (type 2 is erythroid and associated with porphyria)
  • ARHGEF2[1] Rho guanine nucleotide exchange factor
  • ARMET[1][6] Mesencephalic astrocyte-derived neurotrophic factor
  • AES[1][6] amino terminal enhancer of split
  • BECN1[1] involved in autophagy and partners with PI3K
  • BUD31[1] formerly Maternal G10 transcript
  • Creatine kinase[1] CKB (ATP reservoir)
  • Cytidine deaminase[1] questionable: not present in very high levels at all
  • CPNE1[1]
  • ENSA (gene)[1]
  • FTH1[1] Heavy chain of Ferritin
  • GDI2[1] rab/ras vessicular trafficking
  • GUK1[1][6] Guanylate kinase transfers phosphate from ATP to GMP
  • HPRT[1][7] Hypoxanthine-guanine phosphoribosyltransferase
  • IFITM1[1] Induced by interferon, transmembrane protein
  • JTB (gene)[1][6] Jumping translocation breakpoint
  • MMPL2[1]
  • NME2[1][6] (formerly NM23B) Nucleoside diphosphate kinase
  • NONO[1]
  • P4HB[1][6]
  • PRDX1[1] peroxiredoxin (reduces peroxides)
  • PTMA[1] Prothymosin
  • RPA2[1] Binds DNA during replication to keep it straightened out
  • SULT1A3[1] Sulfate conjugation (note: SULT1C is cited in earlier literature as being ubiquitous [6] but this may be an example of different tags being used to refer to a common area of 2 closely related genes. If the tag is too short, then it may not be specific enough to truly specify one member of a gene family from another)
  • SYNGR2[1][6] Synaptogyrin (may participate in vessicle translocation)
  • Tetratricopeptide, TTC1[1] small glutamine rich

tetratricopeptide

Open_reading_frame

Sperm/Testis

Although this page is devoted to genes that should be ubiquitously expressed, this section is for genes whose current name reflects their relative upregulation in testes

See also

  • Inducible gene

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 1.100 1.101 1.102 1.103 1.104 1.105 1.106 1.107 1.108 1.109 1.110 1.111 1.112 1.113 1.114 1.115 1.116 1.117 1.118 1.119 1.120 1.121 1.122 1.123 1.124 1.125 1.126 1.127 1.128 1.129 1.130 1.131 1.132 1.133 1.134 1.135 1.136 1.137 1.138 1.139 1.140 1.141 1.142 1.143 1.144 1.145 1.146 1.147 1.148 1.149 1.150 1.151 1.152 1.153 1.154 1.155 1.156 1.157 1.158 1.159 1.160 1.161 1.162 1.163 1.164 1.165 1.166 1.167 1.168 1.169 1.170 1.171 1.172 1.173 1.174 1.175 1.176 1.177 1.178 1.179 1.180 1.181 1.182 1.183 1.184 1.185 1.186 1.187 1.188 1.189 1.190 1.191 1.192 1.193 1.194 1.195 1.196 1.197 1.198 1.199 1.200 1.201 1.202 1.203 1.204 1.205 1.206 1.207 1.208 1.209 1.210 1.211 1.212 1.213 1.214 1.215 1.216 1.217 1.218 1.219 1.220 1.221 1.222 1.223 1.224 1.225 1.226 1.227 1.228 1.229 1.230 1.231 1.232 1.233 1.234 1.235 1.236 1.237 1.238 1.239 1.240 1.241 1.242 1.243 1.244 1.245 1.246 1.247 1.248 1.249 1.250 1.251 1.252 1.253 1.254 1.255 1.256 1.257 1.258 1.259 1.260 1.261 1.262 1.263 1.264 1.265 1.266 1.267 1.268 1.269 1.270 1.271 1.272 1.273 1.274 1.275 1.276 1.277 1.278 1.279 1.280 1.281 1.282 1.283 1.284 1.285 1.286 1.287 1.288 1.289 1.290 1.291 1.292 1.293 1.294 1.295 1.296 1.297 1.298 1.299 1.300 1.301 1.302 1.303 1.304 1.305 1.306 1.307 1.308 1.309 1.310 1.311 1.312 1.313 1.314 1.315 1.316 1.317 1.318 1.319 1.320 1.321 1.322 1.323 1.324 1.325 1.326 1.327 1.328 1.329 1.330 1.331 1.332 1.333 1.334 1.335 Eisenberg E, and Levanon EY (July 2003). "Human housekeeping genes are compact". TRENDS in Genetics 19 (7): 362–365. doi:10.1016/S0168-9525(03)00140-9. PMID 12850439. 
  2. Butte, AJ., et al.. (2001). "Further defining housekeeping, or "maintenance," genes focus on 'a compendium of gene expression in normal human tissues'.". Physiol.Genomics 7 (2): 95–96. PMID 11773595. 
  3. Greer S, Honeywell R, Geletu M, Arulanandam R, Raptis L (Feb 19, 2010). "Housekeeping genes; expression levels may change with density of cultured cells.". J Immunol Methods 355 (1–2): 76–9. doi:10.1016/j.jim.2010.02.006. PMID 20171969. 
  4. Tan SC, Carr CA, Yeoh KK, Schofield CJ, Davies KE, Clarke K. (Nov 2011). "Identification of valid housekeeping genes for quantitative RT-PCR analysis of cardiosphere-derived cells preconditioned under hypoxia or with prolyl-4-hydroxylase inhibitors.". Mol Biol Rep 39 (4): 4857–67. doi:10.1007/s11033-011-1281-5. PMC 3294216. PMID 22065248. 
  5. Rifkind RA., et al..; Marks, PA; Bank, A; Terada, M; Maniatis, GM; Reuben, R; Fibach, E (Nov–Dec 1976). "Erythroid differentiation and the cell cycle: some implications from murine foetal and erythroleukemic cells". Ann Immunol (Paris) 127 (6): 887–93. PMID 1070288. 
  6. 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39 6.40 6.41 6.42 6.43 6.44 6.45 6.46 6.47 6.48 6.49 6.50 6.51 6.52 6.53 6.54 6.55 6.56 6.57 6.58 6.59 6.60 6.61 6.62 6.63 6.64 6.65 6.66 6.67 6.68 6.69 6.70 6.71 6.72 6.73 6.74 6.75 6.76 6.77 6.78 6.79 6.80 6.81 6.82 6.83 6.84 6.85 6.86 6.87 6.88 6.89 6.90 6.91 6.92 6.93 6.94 6.95 6.96 6.97 6.98 6.99 6.100 6.101 6.102 6.103 6.104 6.105 6.106 6.107 6.108 6.109 6.110 6.111 6.112 6.113 6.114 6.115 6.116 6.117 6.118 6.119 6.120 6.121 6.122 6.123 6.124 6.125 6.126 6.127 6.128 6.129 6.130 6.131 6.132 6.133 6.134 6.135 6.136 6.137 6.138 6.139 Velculescu VE, Madden SL, Zhang L, Lash AE, Yu J, Rago C, Lal A, Wang CJ, Beaudry GA, Ciriello KM, Cook BP, Dufault MR, Ferguson AT, Gao Y, He TC, Hermeking H, Hiraldo SK, Hwang PM, Lopez MA, Luderer HF, Mathews B, Petroziello JM, Polyak K, Zawel L, Zhang W, Zhang X, Zhou W, Haluska FG, Jen J, Sukumar S, Landes GM, Riggins GJ, Vogelstein B, Kinzler KW. (Dec 1999). "Analyses of Human Transcriptomes". Nat Genet 23 (4): 387–388. doi:10.1038/70487. PMID 10581018. 
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 Caradec J, Sirab N, Keumeugni C, et al.. (2010). "'Desperate house genes': the dramatic example of hypoxia". British Journal of Cancer 102 (6): 1037–43. doi:10.1038/sj.bjc.6605573. PMC 2844028. PMID 20179706. 
  8. Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, et al. (Dec 21, 2001). "A compendium of gene expression in normal human tissues". Physiol Genomics 7 (2): 97–104. doi:10.1152/physiolgenomics.00040.2001. PMID 11773596. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.