High frequency

From Wikipedia, the free encyclopedia
High frequency
Frequency range 3 to 30 MHz
Wavelength range 100 to 10 m
ITU Radio Band Numbers

1 2 3 4 5 6 7 8 9 10 11 12

ITU Radio Band Symbols

ELF SLF ULF VLF LF MF HF VHF UHF SHF EHF THF

NATO Radio bands

A B C D E F G H I J K L M

IEEE Radar bands

HF VHF UHF L S C X Ku K Ka V W mm

High Frequency in entire electromagnetic spectrum

High frequency (HF) is the ITU-designated range of radio frequency electromagnetic waves (radio waves) between 3 and 30 MHz. Also known as the decameter band or decameter wave as the wavelengths range from one to ten decameters (ten to one hundred metres). Frequencies immediately below HF are denoted medium frequency (MF), and the next higher frequencies are known as very high frequency (VHF). The HF band is a major part of the shortwave band of frequencies, so communication at these frequencies is often called shortwave radio. Because radio waves in this band can be reflected back to Earth by the ionosphere layer in the atmosphere, called "skip" or skywave propagation, these frequencies can be used for long distance communication, at intercontinental distances. The band is used by international shortwave broadcasting stations (2.310 - 25.820 MHz), aviation communication, government time stations, weather stations, amateur radio and citizens band services, among other uses.

Propagation characteristics

A modern Icom M700Pro two-way radio for marine HF radio communications.

The dominant means of long distance communication in this band is skywave (skip) propagation, in which radio waves directed at an angle into the sky reflect (actually refract) back to Earth from layers of ionized atoms in the ionosphere. By this method HF radio waves can travel beyond the horizon, around the curve of the Earth, and can be received at intercontinental distances. However, suitability of this portion of the spectrum for such communication varies greatly with a complex combination of factors:

  • Sunlight/darkness at site of transmission and reception
  • Transmitter/receiver proximity to solar terminator
  • Season
  • Sunspot cycle
  • Solar activity
  • Polar aurora

At any point in time, for a given "skip" communication path between two points, the frequencies at which communication is possible are specified by these parameters

The maximum usable frequency regularly drops below 10 MHz in darkness during the winter months, while in summer during daylight it can easily surpass 30 MHz. It depends on the angle of incidence of the waves; it is lowest when the waves are directed straight upwards, and is higher with less acute angles. This means that at longer distances, where the waves graze the ionosphere at a very blunt angle, the MUF may be much higher. The lowest usable frequency depends on the absorption in the lower layer of the ionosphere (the D-layer). This absorption is stronger at low frequencies and is also stronger with increased solar activity (for example in daylight); total absorption often occurs at frequencies below 5 MHz during daytime. The result of these two factors is that the usable spectrum shifts towards the lower frequencies and into the Medium Frequency (MF) range during winter nights, while on a day in full summer the higher frequencies tend to be more usable, often into the lower VHF range.[citation needed]

When all factors are at their optimum, worldwide communication is possible on HF. At many other times it is possible to make contact across and between continents or oceans. At worst, when a band is 'dead', no communication beyond the limited groundwave paths is possible no matter what powers, antennas or other technologies are brought to bear. When a transcontinental or worldwide path is open on a particular frequency, digital, SSB and Morse code communication is possible using surprisingly low transmission powers, often of the order of milliwatts, provided suitable antennas are in use at both ends and that there is little or no man-made or natural interference.[1] On such an open band, interference originating over a wide area affects many potential users. These issues are significant to military, safety[2] and amateur radio users of the HF bands.

Uses

An amateur radio station incorporating two HF transceivers.

The main users of the high frequency spectrum are:

  • Military and governmental communication systems
  • Aviation air-to-ground communications
  • Amateur radio
  • Shortwave international and regional broadcasting
  • Maritime sea-to-shore services
  • Over the horizon radar systems
  • GMDSS Communication

The high frequency band is very popular with amateur radio operators, who can take advantage of direct, long-distance (often inter-continental) communications and the "thrill factor" resulting from making contacts in variable conditions. International shortwave broadcasting utilizes this set of frequencies, as well as a seemingly declining number of "utility" users (marine, aviation, military, and diplomatic interests), who have, in recent years, been swayed over to less volatile means of communication (for example, via satellites), but may maintain HF stations after switch-over for back-up purposes.

However, the development of Automatic Link Establishment technology based on MIL-STD-188-141 for automated connectivity and frequency selection, along with the high costs of satellite usage, have led to a renaissance in HF usage in government networks. The development of higher speed modems such as those conforming to MIL-STD-188-110C which support data rates up to 120 kilobit/s has also increased the usability of HF for data communications and video transmission. Other standards development such as STANAG 5066 provides for error free data communications through the use of ARQ protocols.

CB radios operate in the higher portion of the range (around 27 MHz), as do some studio-to-transmitter (STL) radio links. Some modes of communication, such as continuous wave morse code transmissions (especially by amateur radio operators) and single sideband voice transmissions are more common in the HF range than on other frequencies, because of their bandwidth-conserving nature, but broadband modes, such as TV transmissions, are generally prohibited by HF's relatively small chunk of electromagnetic spectrum space.

Noise, especially man-made interference from electronic devices, tends to have a great effect on the HF bands. In recent years, concerns have risen among certain users of the HF spectrum over "broadband over power lines" (BPL) Internet access, which has an almost destructive effect on HF communications. This is due to the frequencies on which BPL operates (typically corresponding with the HF band) and the tendency for the BPL "signal" to leak from power lines. Some BPL providers have installed "notch filters" to block out certain portions of the spectrum (namely the amateur radio bands), but a great amount of controversy over the deployment of this access method remains. Other electronic devices including plasma televisions can also have a detrimental effect on the HF spectrum.

In aviation, HF communication systems are required for all trans-oceanic flights. These systems incorporate frequencies down to 2 MHz to include the 2182 kHz international distress and calling channel.

Some radio frequency identification (RFID) tags utilize HF. These tags are commonly known as HFID's or HighFID's (High Frequency Identification).

RF Skin and Cellulite Therapy is a cosmetic treatment that uses a handheld RF emitter in the High Frequency range to heat skin and fat tissue up to 1-2 cm deep, purportedly to shrink and tighten skin collagen and fat. [3] [4] [5]

Antennas

Since horizontally polarized radio waves work better for skywave propagation due to the greater ground absorption of vertically polarized waves, monopole antennas which have vertical polarization are not much used, and antennas based on horizontal dipoles are mostly used. The most common antennas in this band are wire antennas such as wire dipoles and the rhombic antenna; in the upper frequencies, multielement dipole antennas such as the Yagi, quad, and reflective array antennas. Powerful shortwave broadcasting stations often use large wire curtain arrays. For receiving, random wire antennas are often used.

See also

References

  1. Paul Harden (2005). "Solar Activity & HF Propagation". QRP Amateur Radio Club International. Retrieved 2009-02-22. 
  2. "Amateur Radio Emergency Communication". American Radio Relay League, Inc. 2008. Retrieved 2009-02-22. 
  3. US Patent US8317782
  4. Exilis Radio Frequency Treatment
  5. Patent EP2258296A1

Further reading

  • Maslin, N.M. "HF Communications - A Systems Approach". ISBN 0-273-02675-5, Taylor & Francis Ltd, 1987
  • Johnson, E.E., et al., "Advanced High-Frequency Radio Communications". ISBN 0-89006-815-1, Artech House, 1997
  • V. Narayanamurti, et al., "Selective Transmission of High-Frequency Phonons by a Superlattice: The "Dielectric" Phonon Filter". Phys. Rev. Lett. 43, 2012–2016 (Issue 27 – 31 December 1979).
  • Boulos-Paul Bejjani, et al., "Transient Acute Depression Induced by High-Frequency Deep-Brain Stimulation". New England Journal of Medicine, Volume 340:1476-1480 May 13, 1999 Number 19. Massachusetts Medical Society.
  • H. C. Liu, "Analytical model of high-frequency resonant tunneling: The first-order ac current response". Phys. Rev. B 43, 12538–12548 (Issue 15 – 15 May 1991).
  • Sipila, M., et al., "High-frequency periodic time-domain waveform measurement system". IEEE Transactions on Microwave Theory and Techniques, Volume 36, Issue 10, pg. 1397-1405, Oct 1988. ISSN 0018-9480 INSPEC 3291255 DOI 10.1109/22.6087
  • Morched, A., et al., "A high frequency transformer model for the EMTP". IEEE Transactions on Power Delivery, Volume 8, Issue 3, pg. 1615-1626, Jul 1993. ISSN 0885-8977 INSPEC 4581865 DOI 10.1109/61.252688

External links


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.