High-test peroxide

From Wikipedia, the free encyclopedia

High-test peroxide or HTP is a high (85 to 98 percent)-concentration solution of hydrogen peroxide, with the remainder predominantly made up of water. In contact with a catalyst, it decomposes into a high-temperature mixture of steam and oxygen, with no remaining liquid water. It was used as a propellant of HTP rockets and torpedoes, and has been used for high-performance vernier engines.

Applications

When used with a suitable catalyst, HTP can be used as a monopropellant, or with a separate fuel as a bipropellant.

HTP has been used safely (except when used as an oxidizer, with a hypergolic rocket fuel such as C-Stoff) and successfully in many applications, beginning with German usage during World War II, and continues to the present day. During World War II, high-test peroxide was used as an oxidizer in some German bipropellant rocket designs, such as the Walter HWK 509A rocket engine that powered the Messerschmitt Me 163 point defense interceptor fighter late in World War II, comprising 80% of the standardized mixture T-Stoff, and also in the German Type XVII submarine.

Some significant United States programs include the reaction control thrusters on the X-15 program, and the Bell Rocket Belt. The NASA Lunar Lander Research Vehicle used it for rocket thrust to simulate a lunar lander.

The Royal Navy experimented with HTP as the oxidiser in the experimental high-speed target/training submarines Explorer and Excalibur between 1958 and 1969.

The first Russian HTP torpedo was known by the strictly functional name of 53-57, the 53 referring to the diameter in centimeters of the torpedo tube, the 57 to the year it was introduced. Driven by the Cold War competition, they ordered the development of a larger HTP torpedo, to be fired from the 65-centimeter tubes.

British experiments with HTP as a torpedo fuel were discontinued after a peroxide fire resulted in the loss of the submarine HMS Sidon (P259) in 1956. However, up to 1989 air-dropped torpedoes (mk38) fuelled with OTTO, a mixture of HTP and kerosene, were still in use.

British experimentation with HTP continued in rocketry research, ending with the Black Arrow launch vehicles in 1971. Black Arrow rockets successfully launched the Prospero X-3 satellite from Woomera, South Australia using HTP and kerosene fuel.

An accident involving an HTP torpedo is believed to be the cause of the Sinking of the Kursk.

With concentration of 82%, it is still in use on the Russian Soyuz rocket to drive the turbopumps on the boosters and on the orbital vehicle.

HTP will be used in an attempt to break the land speed record with the Bloodhound SSC car, aiming to reach over 1000 mph.

Hydrogen peroxide works best as a propellant in extremely high concentrations - roughly over 70%. Although any concentration of peroxide will generate some hot gas (oxygen plus some steam), at concentrations above approximately 67%, the heat of decomposing hydrogen peroxide becomes large enough to completely vaporize all the liquid at standard temperature. This represents a safety and utilization turning point, since decomposition of any concentration above this amount is capable of transforming the liquid entirely to heated gas (the higher the concentration, the hotter the resulting gas). This very hot steam/oxygen mixture can then be used to generate maximal thrust, power, or work, but it also makes explosive decomposition of the material far more hazardous.

Normal propellant-grade concentrations, therefore, vary from 70 to 98%, with common grades of 70, 85, 90, and 98%. Many of these grades and variations are described in detail in the United States propellant specification number MIL-P-16005 Revision F, which is currently available. The available suppliers of high-concentration propellant-grade hydrogen peroxide are, in general, one of the large commercial companies that make other grades of hydrogen peroxide, including Solvay Interox, FMC, and Degussa. X-L Space Systems upgrades technical-grade hydrogen peroxide to HTP. Other companies that have made propellant-grade hydrogen peroxide in the recent past include Air Liquide and DuPont. DuPont recently sold its hydrogen peroxide manufacturing business to Degussa.

Availability

Propellant-grade hydrogen peroxide is available to qualified buyers. In typical circumstances, this chemical is sold only to companies or government institutions that have the ability to properly handle and utilize the material. Non-professionals have purchased hydrogen peroxide of 70% or lower concentration (the remaining 30% is water with traces of impurities and stabilizing materials, such as tin salts, phosphates, nitrates, and other chemical additives), and increased its concentration themselves. Distillation is extremely dangerous with hydrogen peroxide; peroxide vapor can ignite or detonate depending on specific combinations of temperature and pressure. In general, any boiling mass of high-concentration hydrogen peroxide at ambient pressure will produce vapor-phase hydrogen peroxide, which can detonate. This hazard is mitigated, but not entirely eliminated with vacuum distillation. Other approaches for concentrating hydrogen peroxide are sparging and fractional crystallization.

Copenhagen Suborbitals t-stoff lab in a 8 foot container

High-concentration hydrogen peroxide was formerly available in 70, 90, and 98% concentrations in sizes of 1-gallon, 30-gallon, and bulk-tanker truck volumes.[citation needed] Hydrogen peroxide in concentrations of at least 35% appear on the US Department of Homeland Security’s Chemicals of Interest list.[1]

Propellant-grade hydrogen peroxide is being used on current military systems and is in numerous defense and aerospace research and development programs. Many privately funded rocket companies are using hydrogen peroxide, such as Armadillo Aerospace and Blue Origin, and some amateur groups have expressed interest in manufacturing their own peroxide, for their use and for sale in small quantities to others.

Safety

Since many common substances catalyze peroxide exothermic decomposition into steam and oxygen, handling of HTP requires special care and equipment. It is noted that the common materials iron and copper are incompatible with peroxide, but the reaction can be delayed for seconds or minutes, depending on the grade of peroxide used.

Small hydrogen peroxide spills are easily dealt with by flooding the area with water. Not only does this cool any reacting peroxide but it also dilutes it thoroughly. Therefore, sites that handle hydrogen peroxide are often equipped with emergency showers, and have hoses and people on safety duty.

Contact with skin causes immediate whitening due to the production of oxygen below the skin. Extensive burns occur unless washed off in seconds. Contact with eyes can cause blindness, and so eye protection is usually used. Protective 'moon suit'-style clothing that does not spontaneously absorb or combust with peroxide is recommended.

References

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.