Hexagonal prism
Uniform Hexagonal prism | |
---|---|
Type | Prismatic uniform polyhedron |
Elements | F = 8, E = 18, V = 12 (χ = 2) |
Faces by sides | 6{4}+2{6} |
Schläfli symbol | t{2,6} or {6}x{} |
Wythoff symbol | 2 6 | 2 2 2 3 | |
Coxeter diagrams | |
Symmetry | D6h, [6,2], (*622), order 24 |
Rotation group | D6, [6,2]+, (622), order 12 |
References | U76(d) |
Dual | Hexagonal dipyramid |
Properties | convex, zonohedron |
Vertex figure 4.4.6 |
In geometry, the hexagonal prism is a prism with hexagonal base. This polyhedron has 8 faces, 18 edges, and 12 vertices.
Since it has eight faces, it is an octahedron. However, the term octahedron is primarily used to refer to the regular octahedron, which has eight triangular faces. Because of the ambiguity of the term octahedron and the dissimilarity of the various eight-sided figures, the term is rarely used without clarification.
As a semiregular (or uniform) polyhedron
If faces are all regular, the hexagonal prism is a semiregular polyhedron, more generally, a uniform polyhedron, and the fourth in an infinite set of prisms formed by square sides and two regular polygon caps. It can be seen as a truncated hexagonal hosohedron, represented by Schläfli symbol t{2,6}. Alternately it can be seen as the Cartesian product of a regular hexagon and a line segment, and represented by the product {6}x{}. The dual of a hexagonal prism is a hexagonal bipyramid.
The symmetry group of a right pentagonal prism is D6h of order 24. The rotation group is D6 of order 12.
Volume
As in most prisms, the volume is found by taking the area of the base, with a side length of , and multiplying it by the height .
Other images
A translucent model
Use
It exists as cells of four prismatic uniform convex honeycombs in 3 dimensions:
Hexagonal prismatic honeycomb |
Triangular-hexagonal prismatic honeycomb |
Snub triangular-hexagonal prismatic honeycomb |
Rhombitriangular-hexagonal prismatic honeycomb |
It also exists as cells of a number of four-dimensional uniform polychora, including:
truncated tetrahedral prism |
truncated octahedral prism |
Truncated cuboctahedral prism |
Truncated icosahedral prism |
Truncated icosidodecahedral prism |
runcitruncated 5-cell |
omnitruncated 5-cell |
runcitruncated 16-cell |
omnitruncated tesseract | |
runcitruncated 24-cell |
omnitruncated 24-cell |
runcitruncated 600-cell |
omnitruncated 120-cell | |
Related polyhedra and tilings
Symmetry: [6,2], (*622) | [6,2]+, (622) | [1+,6,2], (322) | [6,2+], (2*3) | ||||||
---|---|---|---|---|---|---|---|---|---|
{6,2} | t{6,2} | r{6,2} | 2t{6,2}=t{2,6} | 2r{6,2}={2,6} | rr{6,2} | tr{6,2} | sr{6,2} | h{6,2} | s{2,6} |
Uniform duals | |||||||||
V62 | V122 | V62 | V4.4.6 | V26 | V4.4.6 | V4.4.12 | V3.3.3.6 | V32 | V3.3.3.3 |
This polyhedron can be considered a member of a sequence of uniform patterns with vertex figure (4.6.2p) and Coxeter-Dynkin diagram . For p < 6, the members of the sequence are omnitruncated polyhedra (zonohedrons), shown below as spherical tilings. For p > 6, they are tilings of the hyperbolic plane, starting with the truncated triheptagonal tiling.
Symmetry *n32 [n,3] |
Spherical | Euclidean | Hyperbolic | |||||
---|---|---|---|---|---|---|---|---|
*232 [2,3] D3h |
*332 [3,3] Td |
*432 [4,3] Oh |
*532 [5,3] Ih |
*632 [6,3] P6m |
*732 [7,3] |
*832 [8,3] |
*∞32 [∞,3] | |
Coxeter Schläfli |
tr{2,3} |
tr{3,3} |
tr{4,3} |
tr{5,3} |
tr{6,3} |
tr{7,3} |
tr{8,3} |
tr{∞,3} |
Omnitruncated figure |
||||||||
Vertex figure | 4.6.4 | 4.6.6 | 4.6.8 | 4.6.10 | 4.6.12 | 4.6.14 | 4.6.16 | 4.6.∞ |
Dual figures | ||||||||
Coxeter | ||||||||
Omnitruncated duals |
||||||||
Face configuration |
V4.6.4 | V4.6.6 | V4.6.8 | V4.6.10 | V4.6.12 | V4.6.14 | V4.6.16 | V4.6.∞ |
See also
Symmetry | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|
[2n,2] [n,2] [2n,2+] [2n+,2] |
||||||||||
Image | ||||||||||
As spherical polyhedra | ||||||||||
Image |
References
- Uniform Honeycombs in 3-Space VRML models
- The Uniform Polyhedra
- Virtual Reality Polyhedra The Encyclopedia of Polyhedra Prisms and antiprisms
External links
- Weisstein, Eric W., "Hexagonal prism", MathWorld.
- Hexagonal Prism Interactive Model -- works in your web browser