Headset (bicycle part)
The headset is the set of components on a bicycle that provides a rotatable interface between the bicycle fork and the head tube of the bicycle frame itself. The short tube through which the steerer of the fork passes is called the head tube. A typical headset consists of two cups that are pressed into the top and bottom of the headtube. Inside the two cups are bearings which provide a low friction contact between the bearing cup and the steerer.
Sizes
Traditional bicycle head tubes and headsets are sized for a 1-inch-diameter (25 mm) steerer tube (also known as the fork column). Many frame and fork manufacturers are now building their parts around a steerer tube with a diameter of 1⅛ inch. The larger diameter of the head tube and headset gives added stiffness to the steering portion of the bicycle.
Common sizes
- 1" or 1 inch (25.4 mm). This may have a fork crown (The base of the fork steerer tube) of a number of different dimensions. Milling may be necessary to make some headsets fit.
- 1.125" or 1⅛ inch (28.575 mm)
- 1.25" or 1¼ inch (31.75 mm)
- 1.5" or 1½ inch (38.1 mm), as used in the OnePointFive International Standard.
- Cannondale Headshok. Although a Headshok steerer is close to 1.5" it is actually 1.5625" or 1 9/16 inch (39.6875 mm). The Headtube dimensions for 1.5" and Headshok are very similar, differing only in the minimum press depth.
- 1.5 inch to 1⅛ inch "tapered" headsets (2009 onwards). The lower bearing is 1.5 inches for increased stiffness and the upper is 1⅛ in for reduced weight and to match existing stem interface.
Types
There are a few different types of headset distinguishable by the way the bearings are held in place (with a lock nut or with a clamping stem), or by where they are located (inside or outside the head tube).
Threaded
Threaded headsets are for use with threaded steerers and are the traditional type (as shown in the above picture). There are eight parts in a threaded headset (from bottom to top): crown race, lower bearings, lower frame cup (pictured as "lower head-tube race"), upper frame cup (pictured as "upper head-tube race"), upper bearings, upper race or cone, washer, locknut.
The order of installation of a typical headset follows. The steerer tube is cut to the appropriate length and the top inch or two of the steerer is threaded using a rolling process. This process assures that no material is lost and the steerer would not be weakened as with a die or lathe cutting. This operation is done by the fork manufacturer. Threaded forks necessitate that the threads on the steerer only use the top 1–2 inches, therefore the forks are sold in varying lengths (this is one reason threadless forks have become so popular with manufacturers as they only need be made in one size). If there is a need to use a fork that is too long, meaning the fork steerer is not threaded down far enough, a bicycle mechanic can use a die, to cut the threads farther down. This is not recommended if the threads need to be cut farther than an inch or so. As a side note, one should never try to thread an unthreaded steerer for the reasons mentioned.[citation needed] The threads are normally of the ISO standard, 1 in by 24 tpi, but other standards do exist. The headtube may be faced and then the cups are pressed into the headtube using a special press, to ensure they are square and true. The fork crown may be faced and then crown race is pressed on to the fork crown, again to make sure that it is square and true. Then the bearings are placed on top of the crown race, after which the steerer tube is inserted in to the headtube. The upper bearings are placed in the upper cup, and the upper race is screwed on to the steerer. The washer is placed on top of the upper race and locknut is screwed on top of that.
The adjustment of the headset to remove play is as follows: the upper race or cone is screwed down until it contacts the bearings in the upper cup. A slight preload is applied, 1/8 or 1/4 of a turn of the upper cone. The locknut is then tightened and the headset is checked for play and smooth operation. Readjustment takes place as necessary.
The stem, of the quill variety, is attached to the fork using the expander bolt which fits through the stem from the top with a wedge at the bottom, the stem fits inside the steerer tube and can be adjusted to the correct height without disturbing the headset. To free the stem for adjustment, undo the bolt on the top of the stem a couple of turns and give the bolt a sharp tap to disengage the wedge.
The threaded headset has recently been replaced by the threadless headset on better quality bicycles for several reasons:
- Threaded forks need a threaded steerer and bicycle manufacturers need to make or buy a different sized fork for every frame size. By comparison, threadless headsets and forks are cheaper for manufacturers because they do not need to be threaded and the same forks can be used on different sized frames.
- Threadless headsets and forks are quicker to install, saving manufacturing costs.
- A threadless headset and fork is marginally lighter than an equivalent threaded headset and fork.
- A threadless stem is more rigidly attached to the forks, giving improved rigidity at the handlebars.
- On bicycles which have not been maintained, water can find its way between the stem and steerer tube of threaded headsets, causing corrosion and seizing.
- Large and relatively expensive tools are required to adjust the bearings in a threaded headset, and these are not easily carried on the road.
Threadless
The threadless headset is a more recent design. U.S. Patent 5095770 is owned by Cane Creek Cycling Components and expired on September 29, 2010. Headsets of this type are often referred to by the Dia Compe (now Cane Creek) registered trademark "Aheadset",[2][3] and are manufactured under license. Like a traditional headset, it uses two sets of bearings and bearing cups. Unlike a threaded headset, a threadless headset does not have a threaded top headset race or use a threaded steerer tube. Instead the steerer tube extends from the fork all the way through the head tube and above the headset, and is held in place by the stem clamped on top.
Tightening a threadless headset requires tightening the preload bolt (or cap bolt) in the cap on the top of the stem. This bolt is connected to a star nut driven down into the steerer tube that acts as an anchor by gripping the inside of the steerer tube with a downward force. The star nut may be replaced by a self expanding wedge in some designs. The bolt compresses the stem down onto spacers, usually aluminum, which in turn compress the headset bearing cups. The preload bolt does not hold the fork onto the bike; after the preload is set, the stem bolts must be tightened to secure the fork in place. The adjustment must be made such that there is no play in the bearings, but allow the fork to turn smoothly without binding or excessive friction.
In this system, the spacers are important in placing the stem and preload bolt in the correct position on the steerer tube. Thus the stack height of the stem becomes important. The steerer tube of the fork must be cut to length such that it leaves at least enough of the steerer tube protruding above the headset for the stem to clamp on to. Bicycle racers seeking the greatest saddle-to-handlebar drop for better aerodynamics will often forgo spacers and cut the steerer tube down to match the headset bearing cup stack height in addition to the stem stack height.
The disadvantage of this is that it does not allow a switch to a different size stem or headset cups with higher stack heights. Also, once the steerer tube is cut to its minimum length, any increase in handlebar height requires purchasing a new fork, a stem with more angular rise (some stems can be turned over for greater height), or a special adapter that clamps onto the steerer tube and gives a higher clamping position for the original stem. In addition, many riders who may have less flexibility than a seasoned racer may wish to gain more height on the handlebars, reducing the saddle-to-handlebar drop and providing a more upright and comfortable riding position. Thus, many threadless forks are cut longer than necessary, and the steerer tube above the stem is stacked with spacers that can be interchanged above or below the stem to fine-tune handlebar height. Often these spacers are aluminum or carbon fiber, but titanium spacers are also available.
Integrated
A relatively recent development, integrated headsets do away with the upper and lower cups on threadless headsets and instead seat the bearings directly against the head tube of the frame. Favored sometimes for their aesthetic appeal, integrated headsets reduce the number of parts involved in the headset assembly. Prominent standards for integrated headsets include Cane Creek's "IS" [4] and Campagnolo's standard, which is nameless apart from the manufacturer name. Chris King, a leading headset manufacturer, offers a vehement argument against the implementation of integrated headsets.[5] The basis of King's argument is that headtubes with bearing "seats" are far from being machined with reasonable precision. The headset cartridge bearings therefore sit somewhat loosely in the headtube of the bicycle (as opposed to being press fit). During use, the bearings, under thrust loads, will rock in their seats and will easily damage the softer frame material (often aluminum, although some titanium frames are manufactured for integrated headsets). Given enough damage to the frame, there would be no choice but to replace the frame, especially if the frame is made of an aluminum alloy (titanium and steel can potentially be repaired, but usually at great cost to the consumer). King also argues that the integrated headset is largely a cost-cutting measure for many of the larger bicycle manufacturers, since integrated headsets are somewhat cheaper and take less time to install.
Internal
Sometimes referred to as semi-integrated headsets, internal headsets include all of the parts of conventional headsets, but locate the bearings inside the head tube, instead of outside. Unlike integrated headsets, internal headsets still employ cups between the bearings and the frame itself. Prominent standards in internal headsets include Chris King's InSet and Cane Creek's ZeroStack. These designs use a 44.0 mm internal headtube diameter.[6][7]
Adjustable head angle
At least one manufacturer is offing after-market headset bearings that enable changing the steering axis angle.[8] When all else remains the same, this alters the geometric trail of the bike.
Bearing types
Bicycle headset bearings are usually ball bearings, either loose balls, caged balls, or presealed in a cartridge; needle bearings are also available.[9]
It is important to distinguish different standards of cartridge bearings in Integrated 1⅛" headsets. There are three integrated standards which are not compatible with each other. The numbers (45/45, 36/45, 36/36) refer to the angle on the cartridge bearing they use. All these bearings look similar.
Campagnolo Standard: 45/45. (often referred as Campagnolo standard) This is common in BMX frames, BMX-derived dirt jump frames (like the Transition Trail-Or-Park). They are also common on road bikes. Three most common manufacturers are Campagnolo, FSA and Cane Creek. Head tubes with this standard have a 42.0mm inner diameter.
Cane Creek Standard: 36/45. Very common on Mountain Bike frames and a fair amount of road frames. Most frames made by Giant that have integrated headtubes use this standard (which amounts to a lot of bicycles). Two major manufacturers: FSA and Cane Creek. Head tubes with this standard have a 41.1mm inner diameter, and Cane Creek claims its CC Standard headsets will fit in a Campagnolo Standard head tube using a 0.25mm shim under the top cap of the headset.
FSA Standard: 36/36. No one uses this standard for fully integrated headsets (bearing sitting in frame) except for a few niche brands. There are still a lot of 36/36 bearings as they are used in all FSA's semi-integrated (internal cup) headsets and some of their standard headsets as well.
Standard measurements
Frame and headset manufacturers have developed several sizing standards:[10]
Fork dimensions
Fork Standard | Stem-Clamp Diameter (nominal) | Crown-Race Seat Diameter (nominal) |
---|---|---|
1" ISO | 25.4 mm | 26.43 mm |
1" JIS | 25.4 mm | 27.03 mm |
1⅛" | 28.6 mm | 30.015 mm |
1¼" | 31.8 mm | 33.0 mm |
1.5" | 38.1 mm | 39.76 mm |
Cylindrical bore head tubes
(Traditional and semi-integrated/ZeroStack)
Head Tube ID (nominal) | Head Tube Standard | Head Tube Type |
---|---|---|
29.9 mm | 1" JIS | Traditional |
30.1 mm | 1" ISO | Traditional |
33.95 mm | 1⅛" Standard | Traditional |
36.95 mm | 1¼" Standard | Traditional |
41.4 mm | 1" ZeroStack | ZeroStack |
44.0 mm | 1⅛" ZeroStack | ZeroStack |
49.61 mm | 1.5" Standard | Traditional |
55.95 mm | 1.5" ZeroStack | ZeroStack |
Integrated head tubes (with chamfers)
Head Tube ID (nominal) | Head Tube Standard | Head Tube Type |
---|---|---|
38.15 mm | 1" Cane Creek Integrated Standard | Integrated |
41.1 mm | 1⅛" Cane Creek Integrated Standard | Integrated |
42.0 mm | 1⅛" Italian/Campagnolo Integrated Standard | Integrated |
47.0 mm | 1¼" Integrated Standard | Integrated |
52.1 mm | 1.5" Integrated Standard | Integrated |
Wear and failure modes
Headsets on bicycles without fenders are exposed to water and grit thrown off by the front tire, which causes rust and rapid wear. Better headsets use rubber lip seals or "O" rings (dirt skirt) to try to keep water out, with varying degrees of success. External Neoprene bands with a Velcro fastening are available to wrap and protect the lower race, and are removable for cleaning. Some cyclists remove the fork and reassemble with a section of old inner tube over the lower race, which performs the same function, albeit with less convenience.
On bicycles ridden only in dry conditions and/or with fenders, the normal failure mode is a progressive notchiness in the steering, described as "indexing" in the bicycle world, caused by pitting of the races or false brinelling, although the term stems from a misunderstanding of the cause; true brinelling is caused merely by pressing the ball axially into the race, and it is almost impossible to replicate this damage even by striking the fork crown repeatedly with a hammer. The pits are by far deepest at the front and back of the head tube, and are actually caused by flexing of the fork blades, which is transmitted to the steerer tube. This misaligns the bearings and causes fretting, a small amplitude, large stress movement which tears metal from the races at the points where the balls rest.[11]
The solution is to have a 45 degree interface in the headset where this flexing movement can be accommodated, preserving the relative alignment of the races and allowing the ball bearings to take pure axial and rotational loads. Shimano cartridge bearing headsets do this by allowing the cartridges to move relative to the pressed-in cups, while Stronglight roller bearing headsets, and most threadless headsets, now have loose upper and lower races which can move relative to the cups. Modern headsets, therefore, rarely suffer from false brinelling.
A less common headset failure is really a frame failure; the head tube can stretch, allowing a headset cup, which is supposed to be a tight interference fit, to become loose in the tube. Lugless frames are most vulnerable; in a lugged frame the lug reinforces the top and bottom of the head tube and generally prevents stretching of this type. A loose cup can be fixed with a retaining compound such as Loctite 660, and some manufacturers produce slightly oversize cups to cope with this situation. It is usually the lower cup which is affected.
Add-ons
In order to provide a cable stop for front cantilever brakes or centerpull brakes, a hanger may be incorporated into the headset, either as part of the washer between the top race and the lock nut in the case of threaded headsets, or as part of a spacer between the top race and the stem in the case of threadless headsets.
References
- ↑ Barnett, John (2006). Barnett's Manual: Analysis and Procedures for Bicycle Mechanics. VeloPress. pp. 5–2 to 5–3. ISBN 978-1-884737-87-9.
- ↑ "Advice on Buying Headsets". Retrieved 2009-05-15.
- ↑ Brown, Sheldon. "Glossary: Threadless Headsets". Retrieved 2009-05-15.
- ↑ Bicycleheadsets.com (owned by: Cane Creek). "S.H.I.S. Overview". Retrieved 2012-12-20.
- ↑ Chris King (March 2002). "Integrated HEadsets Explained" (PDF). Retrieved 2010-02-24.
- ↑ Chris King InSet specs: http://chrisking.com/files/pdfs/InSetTechTable6-10-A%20Web.pdf
- ↑ Cane Creek Identification Guide: www.canecreek.com/manuals/Headset_Instructions/Other/Headset_Identification_and_SpecificationGuide.pdf
- ↑ Matt Pacocha (23 Dec 2011). "Cane Creek AngleSet review". BikeRadar. Retrieved 2013-04-14.
- ↑ "Stronglight Bicycle Components JD A9 Threaded Headset with Needle Bearings". Retrieved 2007-04-11.
- ↑ Cane Creek. "Headset Standards". Retrieved 2010-04-26.
- ↑ "Sheldon Brown: Jobst Brandt: Indexed Steering". Retrieved 2008-05-30.
External links
The Wikibook Bicycles has a page on the topic of: Headset overhaul |
Wikimedia Commons has media related to Headset (bicycle part). |
- Headset types and standards, from Park Tool
- headset crib sheet by Sheldon Brown
- How to put together an 'Aheadset' Interactive assembly guide by www.biketreks.net
|