Half-transitive graph
From Wikipedia, the free encyclopedia
Graph families defined by their automorphisms | ||||
distance-transitive | distance-regular | strongly regular | ||
symmetric (arc-transitive) | t-transitive, t ≥ 2 | |||
(if connected) | ||||
vertex- and edge-transitive | edge-transitive and regular | edge-transitive | ||
vertex-transitive | regular | (if bipartite) biregular | ||
Cayley graph | skew-symmetric | asymmetric |
In the mathematical field of graph theory, a half-transitive graph is a graph that is both vertex-transitive and edge-transitive, but not symmetric.[1] In other words, a graph is half-transitive if its automorphism group acts transitively upon both its vertices and its edges, but not on ordered pairs of linked vertices.
Every connected symmetric graph must be vertex-transitive and edge-transitive, and the converse is true for graphs of odd degree,[2] so that half-transitive graphs of odd degree do not exist. However, there do exist half-transitive graphs of even degree.[3] The smallest half-transitive graph is the Holt graph, with degree 4 and 27 vertices.[4][5]
References
- ↑ Gross, J.L. and Yellen, J. (2004). Handbook of Graph Theory. CRC Press. p. 491. ISBN 1-58488-090-2.
- ↑ Babai, L (1996). "Automorphism groups, isomorphism, reconstruction". In Graham, R; Groetschel, M; Lovasz, L. Handbook of Combinatorics. Elsevier.
- ↑ Bouwer, Z. "Vertex and Edge Transitive, But Not 1-Transitive Graphs." Canad. Math. Bull. 13, 231–237, 1970.
- ↑ Biggs, Norman (1993). Algebraic Graph Theory (2nd ed.). Cambridge: Cambridge University Press. ISBN 0-521-45897-8.
- ↑ Holt, Derek F. (1981). "A graph which is edge transitive but not arc transitive". Journal of Graph Theory 5 (2): 201–204. doi:10.1002/jgt.3190050210..
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.