Gloger's rule

From Wikipedia, the free encyclopedia

Gloger's Rule is a zoological rule which states that within a species of endotherms, more heavily pigmented forms tend to be found in more humid environments, e.g. near the equator. It was named after the zoologist Constantin Wilhelm Lambert Gloger, who first remarked upon this phenomenon in 1833 in a review of covariation of climate and avian plumage color.[1] (Erwin Stresemann notes that the idea was already expressed by Pallas in Zoographia Rosso-Asiatica (1811)[2]) Gloger found that birds in more humid habitats tended to be darker than their relatives from regions with higher aridity. Over 90% of the 52 North American bird species researched conform to this rule.[3]

One explanation of Gloger's rule in the case of birds appears to be the increased resistance of dark feathers to feather- or hair-degrading bacteria such as Bacillus licheniformis. Feathers in humid environments have a greater bacterial load, and humid environments are more suitable for microbial growth; dark feathers or hair are more difficult to break down.[4] More resilient eumelanins – dark brown to black – are deposited in hot and humid regions, whereas in arid regions, pheomelanins – reddish to sandy color – predominate due to the benefit of crypsis.

Among mammals, there is a marked tendency in equatorial and tropical regions to have a darker skin color than poleward relatives. In this case, the underlying cause is probably the need to better protect against excessive solar UV radiation at lower latitudes. However absorption of a certain amount of UV radiation is necessary for the production of certain vitamins, notably vitamin D (see also Osteomalacia).

This principle is also vividly demonstrated among human populations.[5] Populations that evolved in sunnier environments closer to the equator tend to be darker-pigmented than populations originating farther from the equator. There are exceptions, however; among the most well known are the Tibetans and Inuit, who have darker skin than might be expected from their native latitudes. In the first case, this is apparently an adaptation to the extremely high UV irradiation on the Tibetan Plateau, whereas in the second case, the necessity to absorb UV radiation is alleviated by the Inuit's diet naturally rich in Vitamin D.

See also

  • Allen's rule
  • Bergmann's Rule – that correlates latitude with body mass in animals.

References

  1. Gloger (1833)
  2. Stresemann (1975)
  3. Zink & Remsen (1986)
  4. Burtt & Ichida (2004)
  5. Ember et al. (2002)

Further readings

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.