Glaisher–Kinkelin constant

From Wikipedia, the free encyclopedia

In mathematics, the Glaisher–Kinkelin constant or Glaisher's constant, typically denoted A, is a mathematical constant, related to the K-function and the Barnes G-function. The constant appears in a number of sums and integrals, especially those involving Gamma functions and zeta functions. It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin.

Its approximate value is:

A\approx 1.2824271291\dots   (sequence A074962 in OEIS).

The Glaisher–Kinkelin constant A can be given by the limit:

A=\lim _{{n\rightarrow \infty }}{\frac  {K(n+1)}{n^{{n^{2}/2+n/2+1/12}}e^{{-n^{2}/4}}}}

where K(n)=\prod _{{k=1}}^{{n-1}}k^{k} is the K-function. An equivalent form involving the Barnes G-function, given by G(n)=\prod _{{k=1}}^{{n-2}}k!={\frac  {\left[\Gamma (n)\right]^{{n-1}}}{K(n)}} where \Gamma (n) is the gamma function is:

A=\lim _{{n\rightarrow \infty }}{\frac  {(2\pi )^{{n/2}}n^{{n^{2}/2-1/12}}e^{{-3n^{2}/4+1/12}}}{G(n+1)}}.

The Glaisher–Kinkelin constant also appears in the Riemann zeta function, such as:

\zeta ^{{\prime }}(-1)={\frac  {1}{12}}-\ln A
\sum _{{k=2}}^{\infty }{\frac  {\ln k}{k^{2}}}=-\zeta ^{{\prime }}(2)={\frac  {\pi ^{2}}{6}}\left[12\ln A-\gamma -\ln(2\pi )\right]

where \gamma is the Euler–Mascheroni constant.
Some integrals involve this constant:

\int _{0}^{{1/2}}\ln \Gamma (x)dx={\frac  {3}{2}}\ln A+{\frac  {5}{24}}\ln 2+{\frac  {1}{4}}\ln \pi
\int _{0}^{\infty }{\frac  {x\ln x}{e^{{2\pi x}}-1}}dx={\frac  {1}{2}}\zeta ^{{\prime }}(-1)={\frac  {1}{24}}-{\frac  {1}{2}}\ln A

A series representation for this constant follows from a series for the Riemann zeta function given by Helmut Hasse.

\ln A={\frac  {1}{8}}-{\frac  {1}{2}}\sum _{{n=0}}^{\infty }{\frac  {1}{n+1}}\sum _{{k=0}}^{n}\left(-1\right)^{k}{\binom  {n}{k}}\left(k+1\right)^{2}\ln(k+1)

References

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.