GOT2
From Wikipedia, the free encyclopedia
Aspartate aminotransferase, mitochondrial is an enzyme that in humans is encoded by the GOT2 gene.[1][2]
Glutamic-oxaloacetic transaminase is a pyridoxal phosphate-dependent enzyme which exists in cytoplasmic and inner-membrane mitochondrial forms, GOT1 and GOT2, respectively. GOT plays a role in amino acid metabolism and the urea and tricarboxylic acid cycles. The two enzymes are homodimeric and show close homology.[2]
Interactive pathway map
Click on genes, proteins and metabolites below to link to respective articles. [§ 1]
- ↑ The interactive pathway map can be edited at WikiPathways: "GlycolysisGluconeogenesis_WP534".
References
- ↑ Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (Jun 2007). "Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain". J Neurochem 102 (1): 103–11. doi:10.1111/j.1471-4159.2007.04556.x. PMID 17442055.
- ↑ 2.0 2.1 "Entrez Gene: GOT2 glutamic-oxaloacetic transaminase 2, mitochondrial (aspartate aminotransferase 2)".
Further reading
- Doonan S, Barra D, Bossa F (1985). "Structural and genetic relationships between cytosolic and mitochondrial isoenzymes". Int. J. Biochem. 16 (12): 1193–9. doi:10.1016/0020-711X(84)90216-7. PMID 6397370.
- Furuya E, Yoshida Y, Tagawa K (1979). "Interaction of mitochondrial aspartate aminotransferase with negatively charged lecithin liposomes". J. Biochem. 85 (5): 1157–63. PMID 376500.
- Craig IW, Tolley E, Bobrow M, van Heyningen V (1979). "Assignment of a gene necessary for the expression of mitochondrial glutamic-oxaloacetic transaminase in human-mouse hybrid cells". Cytogenet. Cell Genet. 22 (1–6): 190–4. doi:10.1159/000130933. PMID 752471.
- Pol S, Bousquet-Lemercier B, Pavé-Preux M, et al. (1989). "Chromosomal localization of human aspartate aminotransferase genes by in situ hybridization". Hum. Genet. 83 (2): 159–64. doi:10.1007/BF00286710. PMID 2777255.
- Fahien LA, Kmiotek EH, MacDonald MJ, et al. (1988). "Regulation of malate dehydrogenase activity by glutamate, citrate, alpha-ketoglutarate, and multienzyme interaction". J. Biol. Chem. 263 (22): 10687–97. PMID 2899080.
- Pol S, Bousquet-Lemercier B, Pave-Preux M, et al. (1989). "Nucleotide sequence and tissue distribution of the human mitochondrial aspartate aminotransferase mRNA". Biochem. Biophys. Res. Commun. 157 (3): 1309–15. doi:10.1016/S0006-291X(88)81017-9. PMID 3207426.
- Fahien LA, Kmiotek EH, Woldegiorgis G, et al. (1985). "Regulation of aminotransferase-glutamate dehydrogenase interactions by carbamyl phosphate synthase-I, Mg2+ plus leucine versus citrate and malate". J. Biol. Chem. 260 (10): 6069–79. PMID 3997814.
- Martini F, Angelaccio S, Barra D, et al. (1985). "The primary structure of mitochondrial aspartate aminotransferase from human heart". Biochim. Biophys. Acta 832 (1): 46–51. doi:10.1016/0167-4838(85)90172-4. PMID 4052435.
- Davidson RG, Cortner JA, Rattazzi MC, et al. (1970). "Genetic polymorphisms of human mitochondrial glutamic oxaloacetic transaminase". Science 169 (3943): 391–2. doi:10.1126/science.169.3943.391. PMID 5450376.
- Ford GC, Eichele G, Jansonius JN (1980). "Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase". Proc. Natl. Acad. Sci. U.S.A. 77 (5): 2559–63. doi:10.1073/pnas.77.5.2559. PMC 349441. PMID 6930651.
- Jeremiah SJ, Povey S, Burley MW, et al. (1982). "Mapping studies on human mitochondrial glutamate oxaloacetate transaminase". Ann. Hum. Genet. 46 (Pt 2): 145–52. doi:10.1111/j.1469-1809.1982.tb00705.x. PMID 7114792.
- Tolley E, van Heyningen V, Brown R, et al. (1981). "Assignment to chromosome 16 of a gene necessary for the expression of human mitochondrial glutamate oxaloacetate transaminase (aspartate aminotransferase) (E.C. 2.6.1.1.)". Biochem. Genet. 18 (9–10): 947–54. doi:10.1007/BF00500127. PMID 7225087.
- Lain B, Iriarte A, Mattingly JR, et al. (1995). "Structural features of the precursor to mitochondrial aspartate aminotransferase responsible for binding to hsp70". J. Biol. Chem. 270 (42): 24732–9. doi:10.1074/jbc.270.42.24732. PMID 7559589.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
|
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.