François Proth

From Wikipedia, the free encyclopedia

François Proth (1852 1879) was a French self-taught mathematician farmer who lived in Vaux-devant-Damloup near Verdun, France.[1]

He stated four primality-related theorems.[2] The most famous of these, Proth's theorem, can be used to test whether a Proth number (a number of the form k2n + 1 with k odd and k < 2n) is prime. The numbers passing this test are called Proth primes; they continue to be of importance in the computational search for large prime numbers.[3]

Proth also formulated Gilbreath's conjecture on successive differences of primes, 80 years prior to Gilbreath, but his proof of the conjecture turned out to be erroneous.[4]

The cause of Proth's death is not known.

Publications

  • Proth, F. (1876), "Énoncés de divers théorèmes sur les nombres", Comptes Rendus des Séances de l'Académie des Sciences, Paris 83: 1288–1286 .
  • Proth, F. (1878), "Sur quelques identités", Nouvelle Correspondance Mathématique de M. E. Catalan, Bruxelles 4: 377–378 .
  • Proth, F. (1878), "Théorème relatif à la théorie des nombres", Comptes Rendus des Séances de l'Académie des Sciences, Paris 87: 347 .
  • Proth, F. (1878), "Théorèmes sur les nombres premiers", Comptes Rendus des Séances de l'Académie des Sciences, Paris 87: 926 .

References

  1. Wells, David (2011), Prime Numbers: The Most Mysterious Figures in Math, John Wiley & Sons, p. 189, ISBN 9781118045718 .
  2. Mollin, Richard A. (2010), An Introduction to Cryptography, Discrete Mathematics and Its Applications (2nd ed.), CRC Press, p. 192, ISBN 9781420011241 .
  3. Chaumont, Alain; Leicht, Johannes; Müller, Tom; Reinhart, Andreas (2009), "The continuing search for large elite primes", International Journal of Number Theory 5 (2): 209–218, doi:10.1142/S1793042109002031, MR 2502805 .
  4. Caldwell, Chris, "The Prime Glossary: Gilbreath's conjecture", The Prime Pages .


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.