Fleming–Viot process

From Wikipedia, the free encyclopedia

In probability theory, a Fleming–Viot process (F–V process) is a member of a particular subset of probability-measure-valued Markov processes on compact metric spaces, as defined in the 1979 paper by Wendell Helms Fleming and Michel Viot. Such processes are martingales and diffusions.

The Fleming–Viot processes have proved to be important to the development of a mathematical basis for the theories behind allele drift. They are generalisations of the Wright–Fisher process and arise as infinite population limits of suitably rescaled variants of Moran processes.

See also

References

  • Asselah, A.; Ferrari, P. A.; Groisman, P. (2011). "Quasistationary distributions and Fleming-Viot processes in finite spaces". Journal of Applied Probability 48 (2): 322. doi:10.1239/jap/1308662630. 


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.