Flat manifold

From Wikipedia, the free encyclopedia

In mathematics, a Riemannian manifold is said to be flat if its curvature is everywhere zero. Intuitively, a flat manifold is one that "locally looks like" Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up to 180°.

The universal cover of a complete flat manifold is Euclidean space. This can be used to prove the theorem of Bieberbach (1911, 1912) that all compact flat manifolds are finitely covered by tori; the 3-dimensional case was proved earlier by Schoenflies (1891).

Examples

Dimension 1

  • The line
  • The circle

Dimension 2

There are 17 compact 2-dimensional orbifolds with flat metric (including the torus and Klein bottle), listed in the article on orbifolds, that correspond to the 17 wallpaper groups.

Dimension 3

For the complete list of the 6 orientable and 4 non-orientable compact examples see Seifert fiber space.

Higher dimensions

  • Euclidean space
  • Tori
  • Products of flat manifolds
  • Quotients of flat manifolds by groups acting freely.

See also

References

  • Bieberbach, L. (1911), "Über die Bewegungsgruppen der Euklidischen Räume I", Mathematische Annalen 70 (3): 297–336, doi:10.1007/BF01564500 .
  • Bieberbach, L. (1912), "Über die Bewegungsgruppen der Euklidischen Räume II: Die Gruppen mit einem endlichen Fundamentalbereich", Mathematische Annalen 72 (3): 400–412, doi:10.1007/BF01456724 .
  • Schoenflies, A. (1891), Kristallsysteme und Kristallstruktur, Teubner .

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.