Explicit symmetry breaking
From Wikipedia, the free encyclopedia
In theoretical physics, explicit symmetry breaking is the breaking of a symmetry of a theory by terms in its defining equations of motion (most typically, to the Lagrangian or the Hamiltonian) that do not respect the symmetry. Usually this term is used in situations where these symmetry-breaking terms are small, so that the symmetry is approximately respected by the theory. An example is the spectral line splitting in the Zeeman effect, due to a magnetic interaction perturbation in the Hamiltonian of the atoms involved.
Explicit symmetry breaking differs from spontaneous symmetry breaking. In the latter, the defining equations respect the symmetry but the ground state (vacuum) of the theory breaks it.[1]
See also
References
- ↑ Castellani, E. (2003) "On the meaning of Symmetry Breaking" in Brading, K. and Castellani, E. (eds) Symmetries in Physics: New Reflections, Cambridge: Cambridge University Press
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.