Electrodynamic wheel

From Wikipedia, the free encyclopedia

An electrodynamic wheel is a type of wheel proposed for use in electrodynamic levitation maglev.[1][2][3]

Unlike a conventional wheel, an electrodynamic wheel has a rim studded with magnets of alternating poles. As the wheel spins, which is done at a rate so that there is slip between the rim and the guideway's surface, magnetic fields are induced in the conductive guideway which repels the wheel.

Depending on the spin, electrodynamic wheels can provide propulsion, braking, control and lift.

Using 2D model

The mechanical rotation of a radially positioned permanent-magnet Halbach array above a conducting, nonmagnetic track induces eddy currents in the track that can inductively create suspension and propulsion forces simultaneously. The parameters that affect the performance of this electrodynamic wheel are studied using a 2-D steady-state finite-element method.

References

  1. Bird, J. "An Electrodynamic Wheel with a Split-Guideway Capable of Simultaneously Creating Suspension, Thrust and Guidance Forces". University of Wisconsin-Madison. Retrieved 20 December 2012. 
  2. J, Bird. "A Study of the Effect of Using Electrodynamic Wheels in Series". University of Wisconsin-Madison. Retrieved 20 December 2012. 

See also


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.