Einstein–Brillouin–Keller method

From Wikipedia, the free encyclopedia

The Einstein–Brillouin–Keller method (EBK) is a semiclassical method to compute eigenvalues in quantum mechanical systems.[1] There have been a number of recent results computational issues related to this topic, for example, the work of Eric J. Heller and Emmanuel David Tannenbaum using a partial differential equation gradient descent approach.[2]

See also

References

  1. Stone, A.D. (August 2005). "Einstein's unknown insight and the problem of quantizing chaos". Physics Today 58 (8): 37–43. 
  2. Tannenbaum, E.D. and Heller, E. (2001). "Semiclassical Quantization Using Invariant Tori: A Gradient-Descent Approach". Journal of Physical Chemistry A 105: 2801–2813. 


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.