Doherty amplifier

From Wikipedia, the free encyclopedia

The Doherty amplifier is a modified class B radio frequency amplifier invented by William H. Doherty of Bell Telephone Laboratories Inc in 1936. In Doherty's day, within the Western Electric product line, the eponymous electronic device was operated as a linear amplifier with a driver which was modulated. In the 50,000 watt implementation, the driver was a complete 5,000 watt transmitter which could, if necessary, be operated independently of the Doherty amplifier and the Doherty amplifier was used to raise the 5,000 watt level to the required 50,000 watt level.

The amplifier was usually configured as a grounded-cathode, carrier-peak amplifier using two vacuum tubes in parallel connection, one as a class B carrier tube and the other as a class B peak tube (power transistors in modern implementations). The tubes' source (driver) and load (antenna) were split and combined through + and – 90 degree phase shifting networks.[1] Alternate configurations included a grounded-grid carrier tube and a grounded-cathode peak tube whereby the driver power was effectively passed-through the carrier tube and was added to the resulting output power, but this benefit was more appropriate for the earlier and less efficient triode implementations[2] rather than the later and more efficient tetrode implementations.[3]

Successor developments

As successor to Western Electric Company Inc (WE) for radio broadcast transmitters, the Doherty concept was considerably refined by Continental Electronics Manufacturing Company of Dallas, Texas (CE).

Early Continental Electronics designs, by James O. Weldon and others, retained most of the characteristics of Doherty's amplifier but added medium-level screen-grid modulation of the driver (317B, et al.).

The ultimate refinement was the high-level screen-grid modulation scheme invented by Joseph B. Sainton.

Sainton's 317C series consisted of a class C carrier tube in parallel connection with a class C peak tube. The tubes' source (driver) and load (antenna) were split and combined through + and − 90-degree phase-shifting networks as in a Doherty amplifier. The unmodulated radio frequency carrier was applied to the control grids of both tubes. Carrier modulation was applied to the screen grids of both tubes but the screen grid bias points of the carrier and peak tubes were different and were established such that the peak tube was cut off when modulation was absent and the amplifier was producing rated unmodulated carrier power and both tubes were conducting and each tube was contributing twice the rated carrier power during 100% modulation as four times the rated carrier power is required to achieve 100% modulation. As both tubes were operated in class C, a significant improvement in efficiency was thereby achieved in the final stage. In addition, as the tetrode carrier and peak tubes required very little drive power, a significant improvement in efficiency within the driver was achieved as well.[4] The commercial version of the Sainton amplifier employed a cathode-follower modulator, not the push-pull modulator disclosed in the patent,[5] and the entire 50,000-watt transmitter was implemented using only nine total tubes of four tube types, all of these being general-purpose, a remarkable achievement, given that the 317C's most significant competitor, RCA's BTA-50H, was implemented using thirty-two total tubes of nine tube types, nearly one-half of these being special-purpose, employed only in the BTA-50H.

Footnotes

  1. In order to circumvent Western Electric's patent, RCA utilized + 90 and + 270 degree phase shifts; as any student of phasor math knows, + 270 degrees is equivalent to – 90 degrees, therefore these are effectively the same as + and – 90 degree phase shifts (RCA BT-50D, et al.)
  2. WE 117, CE 317A, CE 317B, WAPE station-built, et al.
  3. CE 317C
  4. US patent 3314024, Joseph B. Sainton, "High Efficiency Amplifier and Push–Pull Modulator", issued 1967-04-11, assigned to Continental Electronics Manufacturing Company 
  5. The disclosed push-pull modulator consisted of a phase-splitter with unequal gains followed by a non-inverting cathode-follower modulator (gain less than unity) from the non-inverting side of the phase-splitter and an inverting modulator (gain significantly greater than unity) from the inverting side of the phase-splitter. Therefore, the disclosed push-pull modulator wasn't push-pull at all. The commercial version utilized a pair of tubes in parallel as a cathode-follower modulator with, consequently, no need to balance grossly different gains of the two modulator tubes. However, a scheme to finely balance the two modulator tubes, which had the same nominal gain, was incorporated just the same.

References

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.