Dodecadodecahedron

From Wikipedia, the free encyclopedia
Dodecadodecahedron
TypeUniform star polyhedron
ElementsF = 24, E = 60
V = 30 (χ = 6)
Faces by sides12{5}+12{5/2}
Wythoff symbol(s)2 | 5 5/2
2 | 5 5/3
2 | 5/2 5/4
2 | 5/3 5/4
Symmetry groupIh, [5,3], *532
Index referencesU36, C45, W73
Bowers acronymDid

5.5/2.5.5/2
(Vertex figure)

Medial rhombic triacontahedron
(dual polyhedron)

In geometry, the dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U36.

Wythoff constructions

It has four Wythoff constructions between four Schwarz triangle families: 2 | 5 5/2, 2 | 5 5/3, 2 | 5/2 5/4, 2 | 5/3 5/4, but represent identical results. Similarly it can be given four extended Schläfli symbols: t1{5/2,5}, t1{5/3,5}, t1{5/2,5/4}, and t1{5/3,5/4}. And it can also be given four Coxeter-Dynkin diagrams: , , , and .

Net

A shape with the same exterior appearance as the dodecadodecahedron can be constructed by folding up these nets:

12 pentagrams and 20 rhombic clusters are necessary. However, this construction replaces the crossing pentagonal faces of the dodecadodecahedron with non-crossing sets of rhombs, so it does not produce the same internal structure.

Related polyhedra

Its convex hull is the icosidodecahedron. It also shares its edge arrangement with the small dodecahemicosahedron (having the pentagrammic faces in common), and with the great dodecahemicosahedron (having the pentagonal faces in common).


Dodecadodecahedron

Small dodecahemicosahedron

Great dodecahemicosahedron

Icosidodecahedron (convex hull)

This polyhedron can be considered a rectified great dodecahedron. It is center of a truncation sequence between a small stellated dodecahedron and great dodecahedron:

The truncated small stellated dodecahedron looks like a dodecahedron on the surface, but it has 24 faces: 12 pentagons from the truncated vertices and 12 overlapping as (truncated pentagrams). The truncation of the dodecadodecahedron itself is not uniform, but it has a uniform quasitruncation, the truncated dodecadodecahedron.

Name Small stellated dodecahedron Truncated small stellated dodecahedron Dodecadodecahedron Truncated
great
dodecahedron
Great
dodecahedron
Coxeter-Dynkin
diagram
Picture

It is topologically equivalent to a quotient space of the hyperbolic order-4 pentagonal tiling, by distorting the pentagrams back into regular pentagons. As such, it is topologically a regular polyhedron of index two:[1][2]

The colours in the above image correspond to the red pentagrams and yellow pentagons of the dodecadodecahedron at the top of this article.

See also

References

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.