Ditrigonal dodecadodecahedron
Ditrigonal dodecadodecahedron | |
---|---|
Type | Uniform star polyhedron |
Elements | F = 24, E = 60 V = 20 (χ = −16) |
Faces by sides | 12{5}+12{5/2} |
Wythoff symbol(s) | 3 | 5/3 5 3/2 | 5 5/2 3/2 | 5/3 5/4 3 | 5/2 5/4 |
Symmetry group | Ih, [5,3], *532 |
Index references | U41, C53, W80 |
Bowers acronym | Ditdid |
(5.5/3)3 (Vertex figure) |
Medial triambic icosahedron (dual polyhedron) |
In geometry, the ditrigonal dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U41.It has 4 Schwarz triangle equivalent constructions, for example Wythoff symbol 3 | 5/3 5, and Coxeter diagram .
Related polyhedra
Its convex hull is a regular dodecahedron. It additionally shares its edge arrangement with the small ditrigonal icosidodecahedron (having the pentagrammic faces in common), the great ditrigonal icosidodecahedron (having the pentagonal faces in common), and the regular compound of five cubes.
Small ditrigonal icosidodecahedron |
Great ditrigonal icosidodecahedron |
Ditrigonal dodecadodecahedron |
Dodecahedron (convex hull) |
Compound of five cubes |
Furthermore, it may be viewed as a facetted dodecahedron: the pentagonal faces may be inscribed within the dodecahedron's pentagons. Its dual, the medial triambic icosahedron, is a stellation of the icosahedron.
It is topologically equivalent to a quotient space of the hyperbolic order-6 pentagonal tiling, by distorting the pentagrams back into regular pentagons. As such, it is a regular polyhedron of index two:[1]
See also
References
- ↑ The Regular Polyhedra (of index two), David A. Richter