Distortion function

From Wikipedia, the free encyclopedia

A distortion function g:[0,1]\to [0,1] is a non-decreasing function such that g(0)=0 and g(1)=1. The dual distortion function is {\tilde  {g}}(x)=1-g(1-x).[1][2] Distortion functions are used to define distortion risk measures.[2]

Given a probability space (\Omega ,{\mathcal  {F}},{\mathbb  {P}}), then for any random variable X and any distortion function g we can define a new probability measure {\mathbb  {Q}} such that for any A\in {\mathcal  {F}} it follows that

{\mathbb  {Q}}(A)=g({\mathbb  {P}}(X\in A)). [1]

References

  1. 1.0 1.1 Balbás, A.; Garrido, J.; Mayoral, S. (2008). "Properties of Distortion Risk Measures". Methodology and Computing in Applied Probability 11 (3): 385. doi:10.1007/s11009-008-9089-z. 
  2. 2.0 2.1 Julia L. Wirch; Mary R. Hardy. "Distortion Risk Measures: Coherence and Stochastic Dominance" (pdf). Retrieved March 10, 2012. 


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.