Diphosphorus tetraiodide
Diphosphorus tetraiodide | ||
---|---|---|
IUPAC name Diphosphorus tetraiodide | ||
Tetraiododiphosphane | ||
Other names Phosphorus(II) iodide | ||
Identifiers | ||
CAS number | 13455-00-0 | |
Properties | ||
Molecular formula | P2I4 | |
Molar mass | 569.57 g/mol | |
Appearance | Orange crystalline solid | |
Melting point | 124 to 127 °C; 255 to 261 °F; 397 to 400 K | |
Boiling point | Decomposes | |
Solubility in water | Decomposes | |
Hazards | ||
EU classification | C | |
R-phrases | R14, R34, R37 | |
Flash point | Non-flammable | |
(verify) (what is: / ?) Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa) | ||
Infobox references | ||
Diphosphorus tetraiodide, P2I4, is an orange crystalline solid, and a versatile reducing agent. The phosphorus atom has an NMR chemical shift of about +100 ppm (downfield of H3PO4) (+108 ppm in CS2). Phosphorus contains a rare oxidation state of +2 in this compound.
Synthesis
Diphosphorus tetraiodide is easily generated by the disproportionation of phosphorus triiodide in dry ether:
- 2 PI3 → P2I4 + I2
It can also be obtained by reacting phosphorus trichloride and potassium iodide in anhydrous conditions.[1]
Reactions
Diphosphorus tetraiodide reacts with bromine to form a mixture of PI3, PBr3, PBr2I and PBrI2.[2]
Applications
Diphosphorus tetraiodide is used in organic chemistry for converting carboxylic acids to nitriles,[3] for deprotecting acetals and ketals to aldehydes and ketones, and for converting epoxides into alkenes and aldoximes into nitriles. It can also cyclize 2-aminoalcohols to aziridines[4] and to convert α,β-unsaturated carboxylic acids to α,β-unsaturated bromides.[5]
In the Kuhn–Winterstein reaction, diphosphorus tetraiodide is used in the conversion of glycols to alkenes.[6]
See also
- Phosphorus triiodide
- Phosphorus halides
References
- ↑ H. Suzuki, T. Fuchita, A. Iwasa, T. Mishina (December 1978). "Diphosphorus Tetraiodide as a Reagent for Converting Epoxides into Olefins, and Aldoximes into Nitriles under Mild Conditions". Synthesis 1978 (12): 905–908. doi:10.1055/s-1978-24936.
- ↑ A. H. Cowley and S. T. Cohen (June 1965). "The Iodides of Phosphorus. II. The Reaction of Bromine with Diphosphorus Tetraiodide". Tetrahedron Letters 4 (8): 1221–1222. doi:10.1021/ic50030a029.
- ↑ Vikas N. Telvekar and Rajesh A. Rane (August 2007). "A novel system for the synthesis of nitriles from carboxylic acids". Tetrahedron Letters 48 (34): 6051–6053. doi:10.1016/j.tetlet.2007.06.108.
- ↑ H. Suzuki, H. Tani (1984). "A mild cyclization of 2-aminoalcohols to aziridines using diphosphorus tetraiodide". Chemistry Letters 13 (12): 2129–2130. doi:10.1246/cl.1984.2129.
- ↑ Vikas N. Telvekar, Somsundaram N. Chettiar (June 2007). "A novel system for decarboxylative bromination". Tetrahedron Letters 48 (26): 4529–4532. doi:10.1016/j.tetlet.2007.04.137.
- ↑ Richard Kuhn, Alfred Winterstein (1928). "Über konjugierte Doppelbindungen I. Synthese von Diphenyl-poly-enen". Helvetica Chimica Acta 11 (1): 87–116. doi:10.1002/hlca.19280110107.