Deuring–Heilbronn phenomenon
From Wikipedia, the free encyclopedia
In mathematics, the Deuring–Heilbronn phenomenon, discovered by Deuring (1933) and Heilbronn (1934), states that a counterexample to the generalized Riemann hypothesis for one Dirichlet L-function affects the location of the zeros of other Dirichlet L-functions.
References
- Deuring, M. (1933), "Imaginäre quadratische Zahlkörper mit der Klassenzahl 1.", Mathematische Zeitschrift (in German) 37: 405–415, doi:10.1007/BF01474583, ISSN 0025-5874, JFM 59.0946.03, Zbl 0007.29602
- Heilbronn, Hans (1934), "On the class-number in imaginary quadratic fields.", Quarterly journal of mathematics 5: 150–160, doi:10.1093/qmath/os-5.1.150, JFM 60.0155.01, Zbl 0009.29602
- Montgomery, Hugh L. (1994), Ten lectures on the interface between analytic number theory and harmonic analysis, Regional Conference Series in Mathematics 84, Providence, RI: American Mathematical Society, ISBN 0-8218-0737-4, Zbl 0814.11001
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.