Deoxyribonuclease I

From Wikipedia, the free encyclopedia
Deoxyribonuclease I
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
SymbolsDNASE1; DNL1; DRNI
External IDsOMIM: 125505 MGI: 103157 HomoloGene: 3826 GeneCards: DNASE1 Gene
EC number3.1.21.1
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez177313419
EnsemblENSG00000213918ENSMUSG00000005980
UniProtP24855P49183
RefSeq (mRNA)NM_005223NM_010061
RefSeq (protein)NP_005214NP_034191
Location (UCSC)Chr 16:
3.66 – 3.73 Mb
Chr 16:
4.04 – 4.04 Mb
PubMed search

Deoxyribonuclease I (usually called DNase I), is an endonuclease coded by the human gene DNASE1.[1] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide, yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average producing tetranucleotides. It acts on single-stranded DNA, double-stranded DNA, and chromatin. In addition to its role as a waste-management endonuclease, it has been suggested to be one of the deoxyribonucleases responsible for DNA fragmentation during apoptosis.[2]

DNase I binds to the cytoskeletal protein actin. It binds actin monomers with very high (sub-nanomolar) affinity and actin polymers with lower affinity. The function of this interaction is unclear. However, since actin-bound DNase I is enzymatically inactive, the DNase-actin complex might be a storage form of DNase I that prevents damage of the genetic information.

This gene encodes a member of the DNase family. This protein is stored in the zymogen granules of the nuclear envelope and functions by cleaving DNA in an endonucleolytic manner. At least six autosomal codominant alleles have been characterized, DNASE1*1 through DNASE1*6, and the sequence of DNASE1*2 represented in this record. Mutations in this gene, as well as factor inactivating its enzyme product, have been associated with systemic lupus erythematosus (SLE), an autoimmune disease.[3][4] A recombinant form of this protein is used to treat one of the symptoms of cystic fibrosis by hydrolyzing the extracellular DNA in sputum and reducing its viscosity.[5] Alternate transcriptional splice variants of this gene have been observed but have not been thoroughly characterized.[1]

In genomics

In genomics, DNase I hypersensitive sites are thought to be characterized by open, accessible chromatin; therefore, a DNase I sensitivity assay is a widely used methodology in genomics for identifying which regions of the genome are likely to contain genes [6]

References

  1. 1.0 1.1 "Entrez Gene: DNASE1 deoxyribonuclease I". 
  2. Samejima1, K and Earnshaw, W.C. (2005). "Trashing the genome: the role of nucleases during apoptosis". Nat Rev Mol Cell Biol 6: 677–88. doi:10.1038/nrm1715. 
  3. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A. (2010). "Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis". Proc Natl Acad Sci U S A 107 (21): 9813–8. doi:10.1073/pnas.0909927107. PMC 2906830. PMID 20439745. 
  4. Yasutomo K, Horiuchi T, Kagami S, et al. (2001). "Mutation of DNASE1 in people with systemic lupus erythematosus". Nat. Genet. 28 (4): 313–4. doi:10.1038/91070. PMID 11479590. 
  5. Shak S, Capon DJ, Hellmiss R, et al. (1991). "Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum". Proc. Natl. Acad. Sci. U.S.A. 87 (23): 9188–92. doi:10.1073/pnas.87.23.9188. PMC 55129. PMID 2251263. 
  6. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008). "High-resolution mapping and characterization of open chromatin across the genome". Cell 132: 311–322. doi:10.1016/j.cell.2007.12.014. 

Further reading

External links


This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.