7-demicube

From Wikipedia, the free encyclopedia
Demihepteract
(7-demicube)

Petrie polygon projection
Type Uniform 7-polytope
Family demihypercube
Coxeter symbol 141
Schläfli symbol {3,34,1} = h{4,35}
s{26}
Coxeter-Dynkin diagram =
6-faces7814 {31,3,1}
64 {35}
5-faces53284 {31,2,1}
448 {34}
4-faces1624280 {31,1,1}
1344 {33}
Cells2800560 {31,0,1}
2240 {3,3}
Faces2240{3}
Edges672
Vertices64
Vertex figure Rectified 6-simplex
Symmetry group D7, [36,1,1] = [1+,4,35]
[26]+
Dual ?
Properties convex

In geometry, a demihepteract or 7-demicube is a uniform 7-polytope, constructed from the 7-hypercube (hepteract) with alternated vertices truncated. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.

Coxeter named this polytope as 141 from its Coxeter-Dynkin diagram, with a ring on one of the 1-length Coxeter-Dynkin diagram branches.

Cartesian coordinates

Cartesian coordinates for the vertices of a demihepteract centered at the origin are alternate halves of the hepteract:

(±1,±1,±1,±1,±1,±1,±1)

with an odd number of plus signs.


Images

orthographic projections
Coxeter plane B7 D7 D6
Graph
Dihedral symmetry [14/2] [12] [10]
Coxeter plane D5 D4 D3
Graph
Dihedral symmetry [8] [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Related polytopes

There are 95 uniform polytopes with D6 symmetry, 63 are shared by the B6 symmetry, and 32 are unique:


t0(141)

t0,1(141)

t0,2(141)

t0,3(141)

t0,4(141)

t0,5(141)

t0,1,2(141)

t0,1,3(141)

t0,1,4(141)

t0,1,5(141)

t0,2,3(141)

t0,2,4(141)

t0,2,5(141)

t0,3,4(141)

t0,3,5(141)

t0,4,5(141)

t0,1,2,3(141)

t0,1,2,4(141)

t0,1,2,5(141)

t0,1,3,4(141)

t0,1,3,5(141)

t0,1,4,5(141)

t0,2,3,4(141)

t0,2,3,5(141)

t0,2,4,5(141)

t0,3,4,5(141)

t0,1,2,3,4(141)

t0,1,2,3,5(141)

t0,1,2,4,5(141)

t0,1,3,4,5(141)

t0,2,3,4,5(141)

t0,1,2,3,4,5(141)

References

  • H.S.M. Coxeter:
    • Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Richard Klitzing, 7D uniform polytopes (polyexa), x3o3o *b3o3o3o3o - hesa


External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.