Cytoplasmic streaming
Cytoplasmic streaming is the directed flow of cytosol (the liquid component of the cytoplasm) and organelles around large fungal and plant cells through the mediation of actin.[1] This movement aids in the delivery of nutrients, metabolites, genetic information, and other materials to all parts of the cell. Cytoplasmic streaming occurs along actin filaments in the cytoskeleton of the cell.
Cytoplasmic streaming was first discovered in the 1830s. The scientific breakthrough assisted scientists in developing an understanding of the different roles of cells and how they function as the basic operating systems of life.
Research suggests this process occurs through the operation of motor proteins called myosins.[2] These proteins use energy of adenosine triphosphate (ATP) to act as a molecular motor, which slides along actin filaments. This works in a manner that tows the organelles and other cytoplasmic contents in the same direction. Myosin proteins consist of two conjoined proteins. If one protein remains attached to the substrate,[3] the substance acted upon by the protein, such as a microfilament, have the ability to move organelles through the cytoplasm.
Research has been conducted with reference to the order of Charophyta which is thought to contain some of the closest relatives of land plants, in specific Chara species.[4] These haploid organisms contain some of the largest plant cells on earth and a single cell can reach up to 10 cm in length. The large size of these cells provides the efficient distribution of resources, which is enabled via cytoplasmic streaming.[5]
Cytoplasmic streaming is strongly dependent upon intracellular pH and temperature. It has been observed that the effect of temperature on cytoplasmic streaming created linear variance and dependence at different high temperatures in comparison to low temperatures.[6] This process is complicated, with temperature alterations in the system increasing its efficiency, with other factors such as the transport of ions across the membrane being simultaneously affected. This is due to cells homeostasis depending upon active transport which may be affected at some critical temperatures.
Cyclosis is the circulation or streaming of the cytoplasm within some living cells. In plant cells, chloroplasts may be moved around with the stream, possibly to a position of optimum light absorption for photosynthesis. The rate of motion is usually affected by light exposure, temperature, and pH levels.
In reference to pH, because actin and myosin are both proteins, strong dependence on pH is expected. The optimal pH at which cytoplasmic streaming is highest, is achieved at neutral pH and decreases at both low and high pH.
The flow of cytoplasm may be stopped by:
- Adding Lugol's iodine solution
- Adding Cytochalasin D (dissolved in dimethyl sulfoxide)
References
- ↑ "cytoplasmic streaming". Encyclopædia Britannica. Retrieved 2013-11-07.
- ↑ "Myosin". Encyclopædia Britannica. Retrieved 2013-11-05.
- ↑ Biology Online, 2008, Substrate, viewed on the 5/11/13, available at http://www.biology-online.org/dictionary/Substrate
- ↑ "Chapter 4" (pdf). The whole plant and cell to transport,. University of New South Wales. 2013-04-21. Retrieved 2013-11-05.
- ↑ Woodhouse, F. G.; Goldstein, R. E. (2013). "Cytoplasmic streaming in plant cells emerges naturally by microfilament self-organization". Proceedings of the National Academy of Sciences 110 (35): 14132. doi:10.1073/pnas.1302736110.
- ↑ Shimmen, T.; Yokota, E. (2004). "Cytoplasmic streaming in plants". Current Opinion in Cell Biology 16 (1): 68–72. doi:10.1016/j.ceb.2003.11.009. PMID 15037307.
- Riddle, Donald L; Blumenthal, Thomas; Meyer, Barbara J et al., eds. (1997). "Section III: Establishment of Polarity in the One-Cell Embryo". C. elegans II (2nd ed.). Cold Spring Harbor (NY: Cold Spring Harbor Laboratory Press. ISBN 0-87969-532-3.
- Lodish, Harvey; Berk, Arnold; Zipursky, S Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James (2000). "Figure 18-40 Cytoplasmic streaming in cylindrical giant algae". Molecular Cell Biology (4th ed.). New York: W. H. Freeman. ISBN 0-7167-3136-3.
- Lodish 2000, Section 18.5: Actin and Myosin in Nonmuscle Cells
External links
- Measurement of Cyclosis in Elodea
- Video of Cyclosis in Canadian Pondweed
- Video of Cyclosis (Elodea).