Cyanogen iodide

From Wikipedia, the free encyclopedia
Cyanogen iodide
Identifiers
CAS number 506-78-5 YesY
PubChem 10478
ChemSpider 10046 YesY
EC number 208-053-3
RTECS number NN1750000
Jmol-3D images Image 1
Properties[3]
Molecular formula CNI
Molar mass 152.9219 g mol−1
Appearance White crystals
Density 1.84 g mL−1
Melting point 146.7 °C; 296.1 °F; 419.8 K
Solubility in water Reacts
Thermochemistry
Std enthalpy of
formation ΔfHo298
160.5–169.1 kJ mol−1
Hazards
NFPA 704
0
3
0
Related compounds
Related alkanenitriles
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
Infobox references

Cyanogen iodide or iodine cyanide (ICN) is a pseudohalogen composed of iodine and the cyanide group. It is a relatively volatile and highly toxic inorganic compound. It occurs as white crystals that react slowly with water to form hydrogen cyanide.[4][5][6]

Synthesis

Cyanogen iodide is prepared by combining I2 and a cyanide, most commonly sodium cyanide in ice-cold water. The product is extracted with ether.[4][5][6]

I2 + NaCN → NaI + ICN

Applications

Cyanogen iodide has been used in taxidermy as a preservative.[7][8] Generally, cyanogen iodide is used for destroying all lower forms of life.[8]

History

Cyanogen iodide was considered one of the impurities in commercially sold iodine before the 1930s.[citation needed]

Hazards

Cyanogen iodide is toxic if inhaled or ingested and may be fatal if swallowed or absorbed through the skin. Cyanogen iodide may cause convulsions, paralysis and death from respiratory failure. It is a strong irritant and may cause burns to the eyes and skin if contact is encountered. If cyanogen iodide is heated enough to undergo complete decomposition, it may releases toxic fumes of nitrogen oxides, cyanide and iodide. A fire may cause the release of poisonous gas. Cyanogen iodide decomposes when contacted with acids, bases, ammonia, alcohols, and with heating. ICN slowly reacts with water or carbon dioxide to produce hydrogen cyanide.[8][9][10][11]

Solutions in pyridine

Cyanogen iodide solutions in pyridine conduct electric current. Dilute solutions of ICN in pyridine are colorless at first, but upon standing become successively yellow, orange, red-brown and deep red-brown. This effect is due to a change in conductivity, which in turn is due to the formation of an electrolyte. When electrical conductivity of ICN is compared with that of iodine-pyridine solutions, the formation of the electrolyte in ICN proceeds much more slowly. Results confirm that cyanides are much weaker salts in pyridine than are iodides, although cyanogen iodide solutions are able to be dissolved in pyridine giving solutions with electrical conductivity that increases over time and results in maximum values.[12]

External links

References

  1. "Iodine cyanide - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 27 March 2005. Identification. Retrieved 4 June 2012. 
  2. The Merck Index (10th ed.). Rahway, NJ: Merck & Co. 1983. p. 385. 
  3. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3. 
  4. 4.0 4.1 Bak, B.; Hillebert, A. (1952), "CYANOGEN IODIDE", Org. Synth. 32: 29 ; Coll. Vol. 4: 207 
  5. 5.0 5.1 Langlois, M. (1860). "CYANOGÈNE Action de l'iode sur une solution concentrée de cyanure de potassium". Comptes Rendus 51: 29. 
  6. 6.0 6.1 Langlois, M. (1860). "Ueber die Einwirkung des Jods auf concentrirte Cyankaliumlösung". Annalen der Chemie und Pharmacie 116 (3): 288. doi:10.1002/jlac.18601160303. 
  7. "Cyanogen halide". Encyclopedia Britannica (online). Encyclopedia Britannica Inc. 2012. Retrieved 2012-04-12. 
  8. 8.0 8.1 8.2 Pohanish, R. P. (2011). "Cyanogen iodide". Sittig’s Handbook of Toxic and Hazardous Chemicals and Carcinogens (6th ed.). Elsevier. p. 808. ISBN 978-1-4377-7869-4. 
  9. "Iodine cyanide - Compound Summary (CID 10478)". PubChem. NIH. 
  10. "Iodine Cyanide; International Chemical Safety Card No. 0662 (U.S. National Version)". National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. 2005. Retrieved 2012-04-12. 
  11. "Cyanogen Iodide". ChemicalBook. 
  12. Audrieth, L. F.; Birr, E. J. (1933). "Anomalous Electrolytes. I. The Electrical Conductivity of Solutions of Iodine and Cyanogen Iodide in Pyridine". Journal of the American Chemical Society 55 (2): 668–673. doi:10.1021/ja01329a030. 
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.