Cupriavidus metallidurans
From Wikipedia, the free encyclopedia
Cupriavidus metallidurans | |
---|---|
Scientific classification | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Beta Proteobacteria |
Order: | Burkholderiales |
Family: | Burkholderiaceae |
Genus: | Cupriavidus |
Binomial name | |
Cupriavidus metallidurans Goris et al. 2001; Van Damme and Coenye 2004 | |
Cupriavidus metallidurans strain CH34, (renamed from Ralstonia metallidurans[1] and previously known as Ralstonia eutropha and Alcaligenes eutrophus[2]) is a non-spore-forming Gram-negative bacterium which is adapted to survive several forms of heavy metal stress.[3][4] Therefore, it is an ideal subject to study heavy metal disturbance of cellular processes. This bacterium shows a unique combination of advantages not present in this form in other bacteria.
- Its genome has been fully sequenced (Preliminary, unnotated sequence data were obtained from the DOE Joint Genome Institute (JGI)).
- It is non-pathogenic, therefore, models of the cell can also be tested in artificial environments similar to the natural habitats of this bacterium.
- It is related to the plant pathogen Ralstonia solanacearum.[5]
- It is of ecological importance since related bacteria are predominant in mesophilic heavy metal-contaminated environments.[2][6]
- It is of industrial importance and used for heavy metal remediation and sensing.[4]
- It is an aerobic chemolithoautotroph, facultatively able to grow in a mineral salts medium in the presence of H2, O2 and CO2 without an organic carbon source.[7] The energy providing subsystem of the cell under these conditions is composed only of the hydrogenase, the respiratory chain and the F1F0-ATPase. This keeps this subsystem simple and clearly separated from the anabolic subsystems that starts with the Calvin cycle for CO2-fixation.
- It is able to degrade xenobiotics even in the presence of high heavy metal concentrations.[8]
- Finally, strain CH34 is adapted to the outlined harsh conditions by a multitude of heavy metal resistance systems that are encoded by the two indigenous megaplasmids pMOL28 and pMOL30 on the bacterial chromosome(s).[3][4][9]
Also it plays a vital role, together with the species Delftia acidovorans, in the formation of gold nuggets, by precipitating metallic gold from a solution of gold (III) tetrachloride, a compound highly toxic to most other microorganisms.[10] [11] [12]
References
- ↑ Vandamme, P.; T. Coeyne (June 18, 2004). "Taxonomy of the genus Cupriavidus: a tale of lost and found". International Journal of Systematic and Evolutionary Microbiology 54 (Pt 6): 2285–2289. doi:10.1099/ijs.0.63247-0. PMID 15545472.
- ↑ 2.0 2.1 Goris, J., et al. (2001). "Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend.". Int J Syst Evol Microbiol 51 (Pt 5): 1773–1782. doi:10.1099/00207713-51-5-1773. PMID 11594608.
- ↑ 3.0 3.1 Nies, DH (1999). "Microbial heavy metal resistance.". Appl Microbiol Biotechnol 51 (6): 730–750. doi:10.1007/s002530051457. PMID 10422221.
- ↑ 4.0 4.1 4.2 Nies, DH (2000). "Heavy metal resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia spec. CH34". Extremophiles 4 (2): 77–82. doi:10.1007/s007920050140. PMID 10805561.
- ↑ Salanoubat M. et al. (2002). "Genome sequence of the plant pathogen Ralstonia solanacearum". Nature 415 (6871): 497–502. doi:10.1038/415497a. PMID 11823852.
- ↑ Diels, L.; Q. Dong, D. van der Lelie, W. Baeyens, and M. Mergeay (1995). "The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals". Journal of Industrial Microbiology 14 (2): 142–153. doi:10.1007/BF01569896. PMID 7766206.
- ↑ Mergeay, M.; D. Nies, H.G. Schlegel, J. Gerits, P. Charles, and F. van Gijsegem (1985). "Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals". Journal of Bacteriology 162 (1): 328–334. PMC 218993. PMID 3884593.
- ↑ Springael, D.; L. Diels, L. Hooyberghs, S. Kreps and M. Mergeay (1993). "Construction and characterization of heavy metal resistant haloaromatic-degrading Alcaligenes eutrophus strains". Appl Environ Microbiol 59 (1): 334–339. PMC 202101. PMID 8439161.
- ↑ Monchy, S.; M.A. Benotmane, P. Janssen, T. Vallaeys, S. Taghavi, D. van der Lelie, and M. Mergeay (October 2007). "Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals". Journal of Bacteriology 189 (20): 7417–7425. doi:10.1128/JB.00375-07. PMC 2168447. PMID 17675385.
- ↑ Reith, Frank; Stephen L. Rogers, D. C. McPhail, and Daryl Webb (July 14, 2006). "Biomineralization of Gold: Biofilms on Bacterioform Gold". Science 313 (5784): 233–236. doi:10.1126/science.1125878. PMID 16840703.
- ↑ Superman-Strength Bacteria Produce 24-Karat Gold
- ↑ The bacteria that turns toxic chemicals into pure gold
External links
This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.