Crystal Ball function

From Wikipedia, the free encyclopedia
Examples of the Crystal Ball function.

The Crystal Ball function, named after the Crystal Ball Collaboration (hence the capitalized initial letters), is a probability density function commonly used to model various lossy processes in high-energy physics. It consists of a Gaussian core portion and a power-law low-end tail, below a certain threshold. The function itself and its first derivative are both continuous.

The Crystal Ball function is given by:

f(x;\alpha ,n,{\bar  x},\sigma )=N\cdot {\begin{cases}\exp(-{\frac  {(x-{\bar  x})^{2}}{2\sigma ^{2}}}),&{\mbox{for }}{\frac  {x-{\bar  x}}{\sigma }}>-\alpha \\A\cdot (B-{\frac  {x-{\bar  x}}{\sigma }})^{{-n}},&{\mbox{for }}{\frac  {x-{\bar  x}}{\sigma }}\leqslant -\alpha \end{cases}}

where

A=\left({\frac  {n}{\left|\alpha \right|}}\right)^{n}\cdot \exp \left(-{\frac  {\left|\alpha \right|^{2}}{2}}\right),
B={\frac  {n}{\left|\alpha \right|}}-\left|\alpha \right|,
N={\frac  {1}{\sigma (C+D)}}
C={\frac  {n}{\left|\alpha \right|}}\cdot {\frac  {1}{n-1}}\cdot \exp \left(-{\frac  {\left|\alpha \right|^{2}}{2}}\right)
D={\sqrt  {{\frac  {\pi }{2}}}}\left(1+\operatorname {erf}\left({\frac  {\left|\alpha \right|}{{\sqrt  2}}}\right)\right)

N (Skwarnicki 1986) is a normalization factor and \alpha , n, {\bar  x} and \sigma are parameters which are fitted with the data. erf is the error function.

External links

This article is issued from Wikipedia. The text is available under the Creative Commons Attribution/Share Alike; additional terms may apply for the media files.